|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- loss:MSELoss |
|
base_model: nreimers/TinyBERT_L-4_H-312_v2 |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
- negative_mse |
|
widget: |
|
- source_sentence: A woman at home. |
|
sentences: |
|
- The woman is inside. |
|
- The woman is performing for an audience. |
|
- The two men are freinds |
|
- source_sentence: boys play football |
|
sentences: |
|
- Rival college football players are playing a football game. |
|
- A man looks at his watch at a bus stop. |
|
- A woman walking on an old bridge near a mountain. |
|
- source_sentence: Nobody has a pot |
|
sentences: |
|
- Nobody has a suit |
|
- A woman riding a bicycle on the street. |
|
- The front is decorated with Ethiopian themes and motifs. |
|
- source_sentence: A dog plays ball. |
|
sentences: |
|
- A dog with a ball. |
|
- A man looking into a microscope in a lab |
|
- Children go past their parents. |
|
- source_sentence: A person standing |
|
sentences: |
|
- There is a person standing outside |
|
- A young man plays a racing video game. |
|
- Two children playing on the floor with toy trains. |
|
pipeline_tag: sentence-similarity |
|
co2_eq_emissions: |
|
emissions: 3.457859864142588 |
|
energy_consumed: 0.00889591477312334 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: false |
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K |
|
ram_total_size: 31.777088165283203 |
|
hours_used: 0.054 |
|
hardware_used: 1 x NVIDIA GeForce RTX 3090 |
|
model-index: |
|
- name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8077673131159315 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8208863013753134 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8225516575982812 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8203236078973807 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8215663439432439 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8202318953605339 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7901487535994149 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7914362691291718 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8225516575982812 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8208863013753134 |
|
name: Spearman Max |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: negative_mse |
|
value: -50.125449895858765 |
|
name: Negative Mse |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test |
|
type: sts-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7516961775809978 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7558402072520215 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7762734499549059 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.75965556867712 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7705568379382428 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7553604477247078 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7306801501272192 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7097993872384684 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7762734499549059 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.75965556867712 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) on the [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) dataset. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) <!-- at revision d782507ee95c6565fe5924fcd6090999055e8db6 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 312 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2") |
|
# Run inference |
|
sentences = [ |
|
'A person standing', |
|
'There is a person standing outside', |
|
'A young man plays a racing video game.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 312] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8078 | |
|
| **spearman_cosine** | **0.8209** | |
|
| pearson_manhattan | 0.8226 | |
|
| spearman_manhattan | 0.8203 | |
|
| pearson_euclidean | 0.8216 | |
|
| spearman_euclidean | 0.8202 | |
|
| pearson_dot | 0.7901 | |
|
| spearman_dot | 0.7914 | |
|
| pearson_max | 0.8226 | |
|
| spearman_max | 0.8209 | |
|
|
|
#### Knowledge Distillation |
|
|
|
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------|:-------------| |
|
| **negative_mse** | **-50.1254** | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7517 | |
|
| **spearman_cosine** | **0.7558** | |
|
| pearson_manhattan | 0.7763 | |
|
| spearman_manhattan | 0.7597 | |
|
| pearson_euclidean | 0.7706 | |
|
| spearman_euclidean | 0.7554 | |
|
| pearson_dot | 0.7307 | |
|
| spearman_dot | 0.7098 | |
|
| pearson_max | 0.7763 | |
|
| spearman_max | 0.7597 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/wikipedia-en-sentences |
|
|
|
* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422) |
|
* Size: 200,000 training samples |
|
* Columns: <code>sentence</code> and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------| |
|
| type | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> | |
|
* Samples: |
|
| sentence | label | |
|
|:---------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>[-0.09614687412977219, 0.6815224885940552, 2.702199935913086, 1.8371250629425049, -1.2949433326721191, ...]</code> | |
|
| <code>Children smiling and waving at camera</code> | <code>[2.769360303878784, 3.074428081512451, -7.291755676269531, 5.248741149902344, 2.85081148147583, ...]</code> | |
|
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[-3.0669667720794678, 2.9899890422821045, -1.253997802734375, 6.15218448638916, 0.5838223099708557, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/wikipedia-en-sentences |
|
|
|
* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422) |
|
* Size: 10,000 evaluation samples |
|
* Columns: <code>sentence</code> and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------| |
|
| type | string | list | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> | |
|
* Samples: |
|
| sentence | label | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>[6.200135707855225, -2.0865142345428467, -2.1313390731811523, -1.9593913555145264, -1.081985592842102, ...]</code> | |
|
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[1.7725015878677368, 0.6873414516448975, -2.5191268920898438, 3.866339683532715, 2.853647470474243, ...]</code> | |
|
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[-3.317653179168701, 3.0908589363098145, 0.1683920919895172, -2.4405274391174316, -3.1366524696350098, ...]</code> | |
|
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `learning_rate`: 0.0001 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: False |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 0.0001 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: None |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine | |
|
|:--------:|:--------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:| |
|
| 0.032 | 100 | 0.8847 | - | - | - | - | |
|
| 0.064 | 200 | 0.8136 | - | - | - | - | |
|
| 0.096 | 300 | 0.697 | - | - | - | - | |
|
| 0.128 | 400 | 0.6128 | - | - | - | - | |
|
| 0.16 | 500 | 0.5634 | 0.6324 | -63.2356 | 0.7564 | - | |
|
| 0.192 | 600 | 0.5294 | - | - | - | - | |
|
| 0.224 | 700 | 0.5035 | - | - | - | - | |
|
| 0.256 | 800 | 0.4861 | - | - | - | - | |
|
| 0.288 | 900 | 0.4668 | - | - | - | - | |
|
| 0.32 | 1000 | 0.4515 | 0.5673 | -56.7263 | 0.7965 | - | |
|
| 0.352 | 1100 | 0.4376 | - | - | - | - | |
|
| 0.384 | 1200 | 0.4274 | - | - | - | - | |
|
| 0.416 | 1300 | 0.4178 | - | - | - | - | |
|
| 0.448 | 1400 | 0.4098 | - | - | - | - | |
|
| 0.48 | 1500 | 0.4053 | 0.5354 | -53.5381 | 0.8091 | - | |
|
| 0.512 | 1600 | 0.3934 | - | - | - | - | |
|
| 0.544 | 1700 | 0.391 | - | - | - | - | |
|
| 0.576 | 1800 | 0.3848 | - | - | - | - | |
|
| 0.608 | 1900 | 0.3785 | - | - | - | - | |
|
| 0.64 | 2000 | 0.3737 | 0.5168 | -51.6829 | 0.8159 | - | |
|
| 0.672 | 2100 | 0.3716 | - | - | - | - | |
|
| 0.704 | 2200 | 0.3695 | - | - | - | - | |
|
| 0.736 | 2300 | 0.3666 | - | - | - | - | |
|
| 0.768 | 2400 | 0.3616 | - | - | - | - | |
|
| 0.8 | 2500 | 0.358 | 0.5067 | -50.6687 | 0.8189 | - | |
|
| 0.832 | 2600 | 0.3551 | - | - | - | - | |
|
| 0.864 | 2700 | 0.3544 | - | - | - | - | |
|
| 0.896 | 2800 | 0.3524 | - | - | - | - | |
|
| 0.928 | 2900 | 0.3524 | - | - | - | - | |
|
| **0.96** | **3000** | **0.3529** | **0.5013** | **-50.1254** | **0.8209** | **-** | |
|
| 0.992 | 3100 | 0.3496 | - | - | - | - | |
|
| 1.0 | 3125 | - | - | - | - | 0.7558 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Energy Consumed**: 0.009 kWh |
|
- **Carbon Emitted**: 0.003 kg of CO2 |
|
- **Hours Used**: 0.054 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090 |
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K |
|
- **RAM Size**: 31.78 GB |
|
|
|
### Framework Versions |
|
- Python: 3.11.6 |
|
- Sentence Transformers: 3.0.0.dev0 |
|
- Transformers: 4.41.0.dev0 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.26.1 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MSELoss |
|
```bibtex |
|
@inproceedings{reimers-2020-multilingual-sentence-bert, |
|
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2020", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/2004.09813", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |