metadata
license: mit
language:
- en
inference: true
base_model:
- microsoft/codebert-base-mlm
pipeline_tag: fill-mask
tags:
- fill-mask
- smart-contract
- web3
- software-engineering
- embedding
- codebert
library_name: transformers
SmartBERT V2 CodeBERT
Overview
SmartBERT V2 CodeBERT is a pre-trained model, initialized with CodeBERT-base-mlm, designed to transfer Smart Contract function-level code into embeddings effectively.
- Training Data: Trained on 16,000 smart contracts.
- Hardware: Utilized 2 Nvidia A100 80G GPUs.
- Training Duration: More than 10 hours.
- Evaluation Data: Evaluated on 4,000 smart contracts.
Preprocessing
All newline (\n
) and tab (\t
) characters in the function code were replaced with a single space to ensure consistency in the input data format.
Base Model
- Base Model: CodeBERT-base-mlm
Training Setup
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
overwrite_output_dir=True,
num_train_epochs=20,
per_device_train_batch_size=64,
save_steps=10000,
save_total_limit=2,
evaluation_strategy="steps",
eval_steps=10000,
resume_from_checkpoint=checkpoint
)
How to Use
To train and deploy the SmartBERT V2 model for Web API services, please refer to our GitHub repository: web3se-lab/SmartBERT.
Or use pipline:
from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline
model = RobertaForMaskedLM.from_pretrained('web3se/SmartBERT-v3')
tokenizer = RobertaTokenizer.from_pretrained('web3se/SmartBERT-v3')
code_example = "function totalSupply() external view <mask> (uint256);"
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)
outputs = fill_mask(code_example)
print(outputs)
Contributors
Sponsors
- Institute of Intelligent Computing Technology, Suzhou, CAS
- CAS Mino (中科劢诺)