|
--- |
|
license: mit |
|
language: |
|
- en |
|
inference: true |
|
base_model: |
|
- microsoft/codebert-base-mlm |
|
- web3se/SmartBERT-v2 |
|
pipeline_tag: fill-mask |
|
tags: |
|
- fill-mask |
|
- smart-contract |
|
- web3 |
|
- software-engineering |
|
- embedding |
|
- codebert |
|
--- |
|
|
|
# SmartBERT V3 CodeBERT |
|
|
|
![SmartBERT](https://huggingface.co/web3se/SmartBERT-v2/resolve/main/framework.png) |
|
|
|
## Overview |
|
|
|
**SmartBERT V3** is a pre-trained programming language model, initialized with **[CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm)**. It has been further trained on [SmartBERT V2](https://huggingface.co/web3se/SmartBERT-v2) with an additional **64,000** smart contracts, to enhance its robustness in representing smart contract code at the _function_ level. |
|
|
|
- **Training Data:** Trained on a total of **80,000** smart contracts, including **16,000** from **[SmartBERT V2](https://huggingface.co/web3se/SmartBERT-v2)** and **64,000** (starts from 30001) new contracts. |
|
- **Hardware:** Utilized 2 Nvidia A100 80G GPUs. |
|
- **Training Duration:** Over 30 hours. |
|
- **Evaluation Data:** Evaluated on **1,500** (starts from 96425) smart contracts. |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline |
|
|
|
model = RobertaForMaskedLM.from_pretrained('web3se/SmartBERT-v3') |
|
tokenizer = RobertaTokenizer.from_pretrained('web3se/SmartBERT-v3') |
|
|
|
code_example = "function totalSupply() external view <mask> (uint256);" |
|
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) |
|
|
|
outputs = fill_mask(code_example) |
|
print(outputs) |
|
``` |
|
|
|
## Preprocessing |
|
|
|
All newline (`\n`) and tab (`\t`) characters in the _function_ code were replaced with a single space to ensure consistency in the input data format. |
|
|
|
## Base Model |
|
|
|
- **Original Model**: [CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) |
|
|
|
## Training Setup |
|
|
|
```python |
|
training_args = TrainingArguments( |
|
output_dir=OUTPUT_DIR, |
|
overwrite_output_dir=True, |
|
num_train_epochs=20, |
|
per_device_train_batch_size=64, |
|
save_steps=10000, |
|
save_total_limit=2, |
|
evaluation_strategy="steps", |
|
eval_steps=10000, |
|
resume_from_checkpoint=checkpoint |
|
) |
|
``` |
|
|
|
## How to Use |
|
|
|
To train and deploy the SmartBERT V3 model for Web API services, please refer to our GitHub repository: [web3se-lab/SmartBERT](https://github.com/web3se-lab/SmartBERT). |
|
|
|
## Contributors |
|
|
|
- [Youwei Huang](https://www.devil.ren) |
|
- [Sen Fang](https://github.com/TomasAndersonFang) |
|
|
|
## Sponsors |
|
|
|
- [Institute of Intelligent Computing Technology, Suzhou, CAS](http://iict.ac.cn/) |
|
- CAS Mino (中科劢诺) |