metadata
license: mit
language:
- en
inference: true
base_model:
- microsoft/codebert-base-mlm
- web3se/SmartBERT-v2
pipeline_tag: fill-mask
tags:
- fill-mask
- smart-contract
- web3
- software-engineering
- embedding
- codebert
SmartBERT V3 CodeBERT
Overview
SmartBERT V3 is a pre-trained programming language model, initialized with CodeBERT-base-mlm. It has been further trained on SmartBERT V2 with an additional 64,000 smart contracts, to enhance its robustness in representing smart contract code at the function level.
- Training Data: Trained on a total of 80,000 smart contracts, including 16,000 from SmartBERT V2 and 64,000 (starts from 30001) new contracts.
- Hardware: Utilized 2 Nvidia A100 80G GPUs.
- Training Duration: Over 30 hours.
- Evaluation Data: Evaluated on 1,500 (starts from 96425) smart contracts.
Usage
from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline
model = RobertaForMaskedLM.from_pretrained('web3se/SmartBERT-v3')
tokenizer = RobertaTokenizer.from_pretrained('web3se/SmartBERT-v3')
code_example = "function totalSupply() external view <mask> (uint256);"
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)
outputs = fill_mask(code_example)
print(outputs)
Preprocessing
All newline (\n
) and tab (\t
) characters in the function code were replaced with a single space to ensure consistency in the input data format.
Base Model
- Original Model: CodeBERT-base-mlm
Training Setup
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
overwrite_output_dir=True,
num_train_epochs=20,
per_device_train_batch_size=64,
save_steps=10000,
save_total_limit=2,
evaluation_strategy="steps",
eval_steps=10000,
resume_from_checkpoint=checkpoint
)
How to Use
To train and deploy the SmartBERT V3 model for Web API services, please refer to our GitHub repository: web3se-lab/SmartBERT.
Contributors
Sponsors
- Institute of Intelligent Computing Technology, Suzhou, CAS
- CAS Mino (中科劢诺)