CocoRoF's picture
CocoRoF/ModernBERT-SimCSE-multitask_v03
9846683 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:5749
  - loss:CosineSimilarityLoss
base_model: CocoRoF/ModernBERT-SimCSE_v02
widget:
  - source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ...  371km / s에서 별자리 leo 쪽으로. "
    sentences:
      - 두 마리의 독수리가 가지에 앉는다.
      - 다른 물체와는 관련이 없는 '정지'는 없다.
      - 소녀는 버스의 열린 문 앞에 서 있다.
  - source_sentence: 숲에는 개들이 있다.
    sentences:
      - 양을 보는 아이들.
      - 여왕의 배우자를 "왕"이라고 부르지 않는 것은 아주 좋은 이유가 있다. 왜냐하면 그들은 왕이 아니기 때문이다.
      - 개들은 숲속에 혼자 있다.
  - source_sentence: '첫째, 두 가지 다른 종류의 대시가 있다는 것을 알아야 합니다 : en 대시와 em 대시.'
    sentences:
      - 그들은  물건들을  주변에 두고 가거나 집의 정리를 해칠 의도가 없다.
      - 세미콜론은 혼자 있을  있는 문장에 참여하는데 사용되지만, 그들의 관계를 강조하기 위해 결합됩니다.
      - 그의 남동생이 지켜보는 동안  앞에서 트럼펫을 연주하는 금발의 아이.
  - source_sentence:  여성이 생선 껍질을 벗기고 있다.
    sentences:
      -  남자가 수영장으로 뛰어들었다.
      -  여성이 프라이팬에 노란 혼합물을 부어 넣고 있다.
      -  마리의 갈색 개가  속에서 서로 놀고 있다.
  - source_sentence: 버스가 바쁜 길을 따라 운전한다.
    sentences:
      - 우리와 같은 태양계가 은하계 밖에서 존재할 수도 있을 것입니다.
      -  여자는 데이트하러 가는 중이다.
      - 녹색 버스가 도로를 따라 내려간다.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_euclidean
  - spearman_euclidean
  - pearson_manhattan
  - spearman_manhattan
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
model-index:
  - name: SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v02
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts_dev
        metrics:
          - type: pearson_cosine
            value: 0.8223949445074785
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8220107207834706
            name: Spearman Cosine
          - type: pearson_euclidean
            value: 0.7785831525283676
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7815628643916452
            name: Spearman Euclidean
          - type: pearson_manhattan
            value: 0.7809119630672191
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7846536514745763
            name: Spearman Manhattan
          - type: pearson_dot
            value: 0.7543765794886113
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7434525191412167
            name: Spearman Dot
          - type: pearson_max
            value: 0.8223949445074785
            name: Pearson Max
          - type: spearman_max
            value: 0.8220107207834706
            name: Spearman Max

SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v02

This is a sentence-transformers model finetuned from CocoRoF/ModernBERT-SimCSE_v02. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: CocoRoF/ModernBERT-SimCSE_v02
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03")
# Run inference
sentences = [
    '버스가 바쁜 길을 따라 운전한다.',
    '녹색 버스가 도로를 따라 내려간다.',
    '그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8224
spearman_cosine 0.822
pearson_euclidean 0.7786
spearman_euclidean 0.7816
pearson_manhattan 0.7809
spearman_manhattan 0.7847
pearson_dot 0.7544
spearman_dot 0.7435
pearson_max 0.8224
spearman_max 0.822

Training Details

Training Dataset

Unnamed Dataset

  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 13.52 tokens
    • max: 36 tokens
    • min: 7 tokens
    • mean: 13.41 tokens
    • max: 32 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    비행기가 이륙하고 있다. 비행기가 이륙하고 있다. 1.0
    한 남자가 큰 플루트를 연주하고 있다. 남자가 플루트를 연주하고 있다. 0.76
    한 남자가 피자에 치즈를 뿌려놓고 있다. 한 남자가 구운 피자에 치즈 조각을 뿌려놓고 있다. 0.76
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 20.38 tokens
    • max: 52 tokens
    • min: 6 tokens
    • mean: 20.52 tokens
    • max: 54 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    안전모를 가진 한 남자가 춤을 추고 있다. 안전모를 쓴 한 남자가 춤을 추고 있다. 1.0
    어린아이가 말을 타고 있다. 아이가 말을 타고 있다. 0.95
    한 남자가 뱀에게 쥐를 먹이고 있다. 남자가 뱀에게 쥐를 먹이고 있다. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • overwrite_output_dir: True
  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 1e-05
  • num_train_epochs: 10.0
  • warmup_ratio: 0.1
  • push_to_hub: True
  • hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v03
  • hub_strategy: checkpoint
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: True
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10.0
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v03
  • hub_strategy: checkpoint
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts_dev_spearman_max
0.2228 10 0.0283 - -
0.4457 20 0.0344 - -
0.6685 30 0.0305 0.0310 0.7939
0.8914 40 0.0489 - -
1.1337 50 0.0382 - -
1.3565 60 0.0271 0.0293 0.7994
1.5794 70 0.0344 - -
1.8022 80 0.0382 - -
2.0446 90 0.0419 0.0280 0.8059
2.2674 100 0.0244 - -
2.4903 110 0.0307 - -
2.7131 120 0.0291 0.0269 0.8108
2.9359 130 0.038 - -
3.1783 140 0.0269 - -
3.4011 150 0.0268 0.0262 0.8155
3.6240 160 0.0246 - -
3.8468 170 0.0313 - -
4.0891 180 0.0303 0.0259 0.8185
4.3120 190 0.0198 - -
4.5348 200 0.0257 - -
4.7577 210 0.0242 0.0255 0.8202
4.9805 220 0.0293 - -
5.2228 230 0.0193 - -
5.4457 240 0.0222 0.0254 0.8222
5.6685 250 0.0184 - -
5.8914 260 0.0243 - -
6.1337 270 0.0204 0.0254 0.8235
6.3565 280 0.0147 - -
6.5794 290 0.0196 - -
6.8022 300 0.0176 0.0253 0.8227
7.0446 310 0.0202 - -
7.2674 320 0.0123 - -
7.4903 330 0.0151 0.0254 0.8236
7.7131 340 0.0132 - -
7.9359 350 0.0158 - -
8.1783 360 0.0118 0.0256 0.8240
8.4011 370 0.0115 - -
8.6240 380 0.0105 - -
8.8468 390 0.0111 0.0256 0.8215
9.0891 400 0.011 - -
9.3120 410 0.0076 - -
9.5348 420 0.0091 0.0256 0.8220
9.7577 430 0.0075 - -
9.9805 440 0.0093 - -

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.0
  • Datasets: 3.1.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}