metadata
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
Approved PRNG initial seeds and seed keys used for initialization are
securely stored in flash memory.
- text: >-
ANSI X9.31 PRNG key Triple DES key Generated internally by non-approved
RNG Volatile memory only (plaintext) Zeroized when the module reboots.
- text: >-
PRNG ANSI X9.31 Key K1, K2 Internal 3DES Key Automatically Generated per
seeding This is an internal key used for ANSI X9.31 192 bits Internal Key
generate from the seed and seed key
- text: >-
PRNG Seed Key A new ANSI X9.31 RNG Seed Key is generated from a block of
160 bits output by the random noise source software library.
- text: >-
FIPS-Approved random number generation ANSI X9.31 PRNG Key AES 128-bit key
Hard-coded in the module.
inference: true
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
negative |
|
positive |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v5")
# Run inference
preds = model("FIPS-Approved random number generation ANSI X9.31 PRNG Key AES 128-bit key Hard-coded in the module.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 6 | 19.1778 | 53 |
Label | Training Sample Count |
---|---|
negative | 22 |
positive | 23 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0294 | 1 | 0.2337 | - |
1.0 | 34 | - | 0.1687 |
1.4706 | 50 | 0.1015 | - |
2.0 | 68 | - | 0.1004 |
2.9412 | 100 | 0.0006 | - |
3.0 | 102 | - | 0.1020 |
4.0 | 136 | - | 0.1021 |
Framework Versions
- Python: 3.10.15
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.3.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Datasets: 2.19.1
- Tokenizers: 0.20.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}