Spaces:
Runtime error
Runtime error
File size: 19,183 Bytes
01f5167 068f4f4 01f5167 1b1ed3e 01f5167 d2ef8c4 01f5167 1b1ed3e 63fd32a 0dd2adc 01f5167 1b84dcb 01f5167 16ebd70 5b24777 1f561dd 9e95d6e 7169eb0 0dd2adc 9e95d6e 1f561dd da69055 1f561dd 1b1ed3e 1f561dd ce29488 1f561dd 16ebd70 852e3fc 16ebd70 1f561dd 16ebd70 1f561dd 16ebd70 1f561dd 12638e1 1b1ed3e 0dd2adc 12638e1 0dd2adc 12638e1 0dd2adc 12638e1 0dd2adc 12638e1 0dd2adc 1b1ed3e 0dd2adc b9f3350 16ebd70 95e9c38 c639b8c 33f4608 e736e68 12638e1 157e414 12638e1 9b81b01 33f4608 1f561dd 0dd2adc 9827cda 12c0cf3 e7b9e7c 1f561dd e56d800 1f561dd bbf9f39 1f561dd e7b9e7c 1f561dd bbf9f39 0dd2adc 9ff8485 e7b9e7c 5b24777 bbf9f39 16ebd70 bbf9f39 e7b9e7c e56d800 e9d9e49 16ebd70 bbf9f39 16ebd70 9b81b01 db27bca 33f4608 b1fee50 c9f7c79 e027695 c9f7c79 e027695 c9f7c79 e027695 c9f7c79 a28cd9d 1f561dd 777423a 1f561dd c5302cd 7437669 0dd2adc ab9ffdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import nltk
import re
import nltkmodule
from newspaper import Article
from newspaper import fulltext
import requests
import itertools
import os
from nltk.tokenize import word_tokenize
from sentence_transformers import SentenceTransformer
import pandas as pd
import numpy as np
from pandas import ExcelWriter
from torch.utils.data import DataLoader
import math
from sentence_transformers import models, losses
from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import *
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import cosine_similarity
import scipy.spatial
import networkx as nx
from nltk.tokenize import sent_tokenize
import scispacy
import spacy
import en_core_sci_lg
import string
from nltk.stem.wordnet import WordNetLemmatizer
import gradio as gr
import inflect
from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score
import json
from xml.etree import ElementTree as ET
p = inflect.engine()
nlp = en_core_sci_lg.load()
sp = en_core_sci_lg.load()
all_stopwords = sp.Defaults.stop_words
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def remove_stopwords(sen):
sen_new = " ".join([i for i in sen if i not in stop_words])
return sen_new
def keyphrase_generator(article_link, model_1, model_2, max_num_keywords, model_3, max_retrieved, model_4):
word_embedding_model = models.Transformer(model_3)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
element=[]
cluster_list_final=[]
comb_list=[]
comb=[]
title_list=[]
titles_list=[]
abstracts_list=[]
silhouette_score_list=[]
final_textrank_list=[]
document=[]
text_doc=[]
final_list=[]
score_list=[]
sum_list=[]
############################################## Here we first extract the sentences using SBERT and Textrank ###########################
model_1 = SentenceTransformer(model_1)
model_2 = SentenceTransformer(model_2)
url = article_link
html = requests.get(url).text
article = fulltext(html)
corpus=sent_tokenize(article)
indicator_list=['concluded','concludes','in a study', 'concluding','conclude','in sum','in a recent study','therefore','thus','so','hence',
'as a result','accordingly','consequently','in short','proves that','shows that','suggests that','demonstrates that','found that','observed that',
'indicated that','suggested that','demonstrated that']
count_dict={}
for l in corpus:
c=0
for l2 in indicator_list:
if l.find(l2)!=-1:#then it is a substring
c=1
break
if c:#
count_dict[l]=1
else:
count_dict[l]=0
for sent, score in count_dict.items():
score_list.append(score)
clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ", regex = True).tolist()
corpus_embeddings = model_1.encode(clean_sentences_new)
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
for i in range(len(clean_sentences_new)):
len_embeddings=(len(corpus_embeddings[i]))
for j in range(len(clean_sentences_new)):
if i != j:
if(len_embeddings == 1024):
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
elif(len_embeddings == 768):
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
nx_graph = nx.from_numpy_array(sim_mat)
scores = nx.pagerank(nx_graph, max_iter = 1500)
sentences=((scores[i],s) for i,s in enumerate(corpus))
for elem in sentences:
element.append(elem[0])
for sc, lst in zip(score_list, element): ########## taking the scores from both the lists
sum1=sc+lst
sum_list.append(sum1)
x=sorted(((sum_list[i],s) for i,s in enumerate(corpus)), reverse=True)
for elem in x:
final_textrank_list.append(elem[1])
################################################################ Textrank ends #################################################
######################################################## From here we start the keyphrase extraction process ################################################
a=int((10*len(final_textrank_list))/100.0)
if(a<5):
total=5
else:
total=int(a)
for i in range(total):
document.append(final_textrank_list[i])
doc=" ".join(document)
for i in document:
doc_1=nlp(i)
text_doc.append([X.text for X in doc_1.ents])
entity_list = [item for sublist in text_doc for item in sublist]
entity_list = [word for word in entity_list if not word in all_stopwords]
entity_list = [word_entity for word_entity in entity_list if(p.singular_noun(word_entity) == False)]
entity_list=list(dict.fromkeys(entity_list))
doc_embedding = model_2.encode([doc])
candidates=entity_list
candidate_embeddings = model_2.encode(candidates)
distances = cosine_similarity(doc_embedding, candidate_embeddings)
top_n = max_num_keywords
keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
keywords = '\n'.join(keyword_list)
############################################################## Keyphrase extraction ends #############################################
################################################################## From here we start the clustering and query generation ##################################
c_len=(len(keyword_list))
keyword_embeddings = embedder.encode(keyword_list)
data_embeddings = embedder.encode(keyword_list)
for num_clusters in range(1, top_n):
clustering_model = KMeans(n_clusters=num_clusters)
clustering_model.fit(keyword_embeddings)
cluster_assignment = clustering_model.labels_
clustered_sentences = [[] for i in range(num_clusters)]
for sentence_id, cluster_id in enumerate(cluster_assignment):
clustered_sentences[cluster_id].append(keyword_list[sentence_id])
cl_sent_len=(len(clustered_sentences))
list_cluster=list(clustered_sentences)
a=len(list_cluster)
cluster_list_final.append(list_cluster)
if (c_len==cl_sent_len and c_len>=3) or cl_sent_len==1:
silhouette_avg = 0
silhouette_score_list.append(silhouette_avg)
elif c_len==cl_sent_len==2:
silhouette_avg = 1
silhouette_score_list.append(silhouette_avg)
else:
silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
silhouette_score_list.append(silhouette_avg)
res_dict = dict(zip(silhouette_score_list, cluster_list_final))
cluster_items=res_dict[max(res_dict)]
for i in cluster_items:
z=' OR '.join(i)
comb.append("("+z+")")
comb_list.append(comb)
combinations = []
for subset in itertools.combinations(comb, 2):
combinations.append(subset)
f1_list=[]
for s in combinations:
final = ' AND '.join(s)
f1_list.append("("+final+")")
f_1=' OR '.join(f1_list)
final_list.append(f_1)
######################################################## query generation ends here #######################################
####################################### PubeMed abstract extraction starts here #########################################
ncbi_url='https://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
last_url='esearch.fcgi?db=pubmed'+'&term='+f_1
overall_url=ncbi_url+last_url+'&rettype=json'+'&sort=relevance'
pubmed_search_request = requests.get(overall_url)
root = ET.fromstring(pubmed_search_request.text)
levels = root.findall('.//Id')
search_id_list=[]
for level in levels:
name = level.text
search_id_list.append(name)
all_search_ids = ','.join(search_id_list)
fetch_url='efetch.fcgi?db=pubmed'
search_id='&id='+all_search_ids
return_url=ncbi_url+fetch_url+search_id+'&rettype=text'+'&retmode=xml'+'&retmax=500'+'&sort=relevance'
pubmed_abstract_request = requests.get(return_url)
root_1 = ET.fromstring(pubmed_abstract_request.text)
article_title = root_1.findall('.//ArticleTitle')
for a in article_title:
article_title_name = a.text
titles_list.append(article_title_name)
article_abstract = root_1.findall('.//AbstractText')
for b in article_abstract:
article_abstract_name = b.text
abstracts_list.append(article_abstract_name)
################################ PubMed extraction ends here ########################################################
########################################## Most relevant abstracts as per news article heading starts here ##########################################
first_article = Article(url, language='en')
first_article.download()
first_article.parse()
article_heading=(first_article.title)
article_heading=sent_tokenize(article_heading)
model_4 = SentenceTransformer(model_4)
my_dict = dict(zip(titles_list,abstracts_list))
title_embeddings = model_4.encode(titles_list)
heading_embedding = model_4.encode(article_heading)
similarities = cosine_similarity(heading_embedding, title_embeddings)
max_n = max_retrieved
sorted_titles = [titles_list[index] for index in similarities.argsort()[0][-max_n:]]
sorted_abstract_list=[]
for list_elem in sorted_titles:
sorted_abstract_list.append(my_dict[list_elem])
sorted_dict = {'Title': sorted_titles, 'Abstract': sorted_abstract_list}
df_new=pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in sorted_dict.items() ]))
df_final = df_new.fillna(' ')
#fp = df_final.to_csv('title_abstract.csv', index=False)
############################################# Ends here ###################################################
#return df_final
#return fp
return sorted_dict
igen_pubmed = gr.Interface(keyphrase_generator,
inputs=[gr.components.Textbox(lines=1, placeholder="Provide article web link here (Can be chosen from examples below)",value="", label="Article web link"),
gr.components.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/gtr-t5-large',
'pritamdeka/S-Bluebert-snli-multinli-stsb',
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'pritamdeka/S-BioBert-snli-multinli-stsb',
'sentence-transformers/stsb-mpnet-base-v2',
'sentence-transformers/stsb-roberta-base-v2',
'sentence-transformers/stsb-distilroberta-base-v2',
'sentence-transformers/sentence-t5-large',
'sentence-transformers/sentence-t5-base'],
type="value",
value='sentence-transformers/stsb-roberta-base-v2',
label="Select any SBERT model for TextRank from the list below"),
gr.components.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/paraphrase-distilroberta-base-v1',
'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
'sentence-transformers/paraphrase-albert-small-v2',
'sentence-transformers/paraphrase-albert-base-v2',
'sentence-transformers/paraphrase-MiniLM-L12-v2',
'sentence-transformers/paraphrase-MiniLM-L6-v2',
'sentence-transformers/all-MiniLM-L12-v2',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/paraphrase-TinyBERT-L6-v2',
'sentence-transformers/paraphrase-MiniLM-L3-v2',
'sentence-transformers/all-MiniLM-L6-v2'],
type="value",
value='sentence-transformers/all-mpnet-base-v1',
label="Select any SBERT model for keyphrases from the list below"),
gr.components.Slider(minimum=5, maximum=20, step=1, value=10, label="Max Keywords"),
gr.components.Dropdown(choices=['cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token'],
type="value",
value='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
label="Select any SapBERT model for clustering from the list below"),
gr.components.Slider(minimum=5, maximum=15, step=1, value=10, label="PubMed Max Abstracts"),
gr.components.Dropdown(choices=['pritamdeka/S-Bluebert-snli-multinli-stsb',
'pritamdeka/S-BioBert-snli-multinli-stsb',
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'sentence-transformers/all-mpnet-base-v2'],
type="value",
value='sentence-transformers/all-mpnet-base-v2',
label="Select any SBERT model for abstracts from the list below")],
#outputs=gr.outputs.Dataframe(type="auto", label="Retrieved Results from PubMed",max_cols=2, overflow_row_behaviour="paginate"),
outputs=gr.components.JSON(label="Title and Abstracts"),
#outputs=gr.outputs.File(label=None),
title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references. The output is in the form of JSON with <b><i>Title</i></b> and <b><i>Abstract</i></b> as the fields of the JSON output. Please note that it may take sometime for the models to load. Examples are provided below for demo purposes. Choose any one example to see the results. The models can be changed to see different results. ",
examples=[
["https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/paraphrase-MiniLM-L12-v2',
10,
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
15,
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
["https://www.cancer.news/2022-02-04-doctors-testifying-covid-vaccines-causing-cancer-aids.html#",
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/all-mpnet-base-v1',
12,
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
11,
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
["https://www.medicalnewstoday.com/articles/alzheimers-addressing-sleep-disturbance-may-alleviate-symptoms",
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'sentence-transformers/all-mpnet-base-v1',
10,
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
10,
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb'],
["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant",
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'sentence-transformers/all-mpnet-base-v1',
15,
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
10,
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb']
],
article= "This work is based on the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
"\t The application then uses a UMLS based BERT model, <a href=https://arxiv.org/abs/2010.11784>SapBERT</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top k titles and abstracts are retrieved from PubMed database and displayed according to relevancy. The SapBERT models can be changed as per the list provided. "
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
"\t The model names can be changed from the list of pre-trained models provided. "
"\t The value of keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 20. "
"\t The value of maximum abstracts to be retrieved can be changed. The minimum is 5, default is 10 and a maximum of 15.")
igen_pubmed.launch(share=False,server_name='0.0.0.0',show_error=True) |