File size: 27,433 Bytes
8b8ed7d
 
 
 
 
acded99
2905dfe
3dc5893
60f8433
02342db
560aed3
 
 
83d7066
560aed3
8b8ed7d
dab3f5c
8b8ed7d
 
dab3f5c
8b8ed7d
bf49bf4
dab3f5c
8b8ed7d
 
 
 
3dc5893
93c7bb1
75a3ee0
93c7bb1
 
30f2144
f8edaf4
 
65408f0
560aed3
 
 
 
f3a4834
 
 
 
 
560aed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2e54bb
 
 
 
 
 
560aed3
 
 
 
 
fc7389c
 
 
 
 
560aed3
 
 
 
 
 
d2e54bb
 
 
 
 
 
560aed3
 
 
 
 
fc7389c
 
 
 
 
560aed3
 
 
 
 
 
6c2f452
d2e54bb
 
 
 
 
 
fc7389c
560aed3
 
 
 
 
fc7389c
 
 
 
 
560aed3
 
 
 
 
 
d2e54bb
 
 
 
 
 
fc7389c
 
 
 
 
 
560aed3
fc7389c
 
 
 
 
560aed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce38201
2ee45f0
 
 
560aed3
 
8c547f3
 
560aed3
 
8c547f3
560aed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08904b5
 
 
2905dfe
 
 
 
f0830d9
2905dfe
08904b5
 
a6ab2dc
 
 
560aed3
37f1ab4
560aed3
 
42e8975
68c876f
f087e05
c57f362
8b8ed7d
08904b5
8b8ed7d
 
719f4db
8b8ed7d
08904b5
8b8ed7d
 
719f4db
8b8ed7d
08904b5
8b8ed7d
 
719f4db
8b8ed7d
08904b5
8b8ed7d
 
719f4db
8b8ed7d
dab3f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b8ed7d
 
 
 
560aed3
 
 
 
 
 
 
 
 
 
 
dab3f5c
 
 
 
 
560aed3
af564ea
 
 
 
 
bcf2d35
 
 
 
 
 
 
 
 
 
 
 
 
1451f69
93c7bb1
3dc5893
7351dbd
64046ce
3a44a8f
64046ce
3a44a8f
3ddaf11
40746ea
788d24e
3ddaf11
788d24e
87469a0
93c7bb1
1d2022c
23a70c2
24e0d93
1d2022c
dc2990d
93c7bb1
 
def6532
 
93c7bb1
def6532
7ebfe54
e6a3e28
def6532
dc2990d
93c7bb1
def6532
acded99
def6532
75a3ee0
def6532
75a3ee0
def6532
6489a03
b361960
e32ab43
def6532
70ce044
1c4c7b5
acded99
6146b94
70ce044
49fd409
560aed3
 
49fd409
560aed3
 
 
 
 
 
8b8ed7d
560aed3
8a08aed
560aed3
 
 
 
 
328282a
ce38201
9fd8cd1
 
 
c819f7e
ce38201
 
 
 
 
c819f7e
ce38201
c819f7e
ce38201
c819f7e
 
328282a
ce38201
560aed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efbb8c2
560aed3
 
 
efbb8c2
328282a
 
 
efbb8c2
560aed3
 
328282a
 
 
8a08aed
 
 
 
 
 
 
 
 
90e9e57
a456741
7e535bc
 
eb8a83e
4ad564e
a456741
 
 
 
 
0767865
1f55b95
daf5242
 
 
 
 
 
 
 
1f55b95
daf5242
 
 
 
 
 
 
 
 
3838254
 
1410ca4
 
daf5242
 
 
 
1410ca4
daf5242
 
 
1410ca4
daf5242
 
 
 
 
 
 
 
1410ca4
daf5242
 
 
 
 
 
 
 
3fd11f7
1410ca4
 
 
3fd11f7
46b051d
1410ca4
8a08aed
 
e92c083
8a08aed
1410ca4
7e535bc
3838254
a456741
1410ca4
8a08aed
1189a30
560aed3
 
 
2ee45f0
 
 
560aed3
 
2ee45f0
560aed3
 
 
 
efbb8c2
ce38201
560aed3
efbb8c2
ce38201
 
 
efbb8c2
560aed3
 
 
429a38a
8c547f3
ce38201
560aed3
 
 
447a9a9
2ee45f0
560aed3
2ee45f0
 
 
 
 
 
 
3a1eb7d
560aed3
 
 
 
 
efbb8c2
560aed3
efbb8c2
560aed3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import csv
import json
import os
import pandas as pd
import datasets
import sys
import pickle
import subprocess
import shutil
from urllib.request import urlretrieve
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import numpy as np
from tqdm import tqdm
import yaml


_DESCRIPTION = """\
Dataset for mimic4 data, by default for the Mortality task.
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype, Mortality Custom, Length of Stay Custom, Readmission Custom, Phenotype Custom.
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main'
mimic path should have this form : "path/to/mimic4data/from/username/mimiciv/2.2"
If you choose a Custom task provide a configuration file for the Time series.
"""

_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset"
_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
_URL = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline"
_DATA_GEN = 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/data_generation_icu_modify.py'
_DAY_INT= 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/day_intervals_cohort_v22.py'
_COHORT = 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/cohort.py'
_CONFIG_URLS = {'los' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/los.config',
                'mortality' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/mortality.config',
                'phenotype' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/phenotype.config',
                'readmission' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/readmission.config'
        }

  

def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=False,feat_meds=False):
    meds=data['Med']
    proc = data['Proc']
    out = data['Out']
    chart = data['Chart']
    cond= data['Cond']['fids']

    cond_df=pd.DataFrame()
    proc_df=pd.DataFrame()
    out_df=pd.DataFrame()
    chart_df=pd.DataFrame()
    meds_df=pd.DataFrame()

    #demographic
    demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
    new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
    demo = demo.append(new_row, ignore_index=True)

    ##########COND#########
    if (feat_cond):
        #get all conds
        with open("./data/dict/"+task+"/condVocab", 'rb') as fp:
            conDict = pickle.load(fp)
        conds=pd.DataFrame(conDict,columns=['COND'])
        features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])

        #onehot encode
        if(cond ==[]):
            cond_df=pd.DataFrame(np.zeros([1,len(features)]),columns=features['COND'])
            cond_df=cond_df.fillna(0)
        else:
            cond_df=pd.DataFrame(cond,columns=['COND'])
            cond_df['val']=1
            cond_df=(cond_df.drop_duplicates()).pivot(columns='COND',values='val').reset_index(drop=True)
            cond_df=cond_df.fillna(0)
            oneh = cond_df.sum().to_frame().T
            combined_df = pd.concat([features,oneh],ignore_index=True).fillna(0)
            combined_oneh=combined_df.sum().to_frame().T
            cond_df=combined_oneh

    ##########PROC#########
    if (feat_proc):
        with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
            procDic = pickle.load(fp)

        if proc :
            feat=proc.keys()
            proc_val=[proc[key] for key in feat]
            procedures=pd.DataFrame(procDic,columns=['PROC'])
            features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
            features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
            procs=pd.DataFrame(columns=feat)
            for p,v in zip(feat,proc_val):
                procs[p]=v
            procs.columns=pd.MultiIndex.from_product([["PROC"], procs.columns])
            proc_df = pd.concat([features,procs],ignore_index=True).fillna(0)
        else:
            procedures=pd.DataFrame(procDic,columns=['PROC'])
            features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
            features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
            proc_df=features.fillna(0)

    ##########OUT#########
    if (feat_out):
        with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
            outDic = pickle.load(fp)

        if out :
            feat=out.keys()
            out_val=[out[key] for key in feat]
            outputs=pd.DataFrame(outDic,columns=['OUT'])
            features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
            features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
            outs=pd.DataFrame(columns=feat)
            for o,v in zip(feat,out_val):
                outs[o]=v
            outs.columns=pd.MultiIndex.from_product([["OUT"], outs.columns])
            out_df = pd.concat([features,outs],ignore_index=True).fillna(0)
        else:
            outputs=pd.DataFrame(outDic,columns=['OUT'])
            features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
            features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
            out_df=features.fillna(0)

    ##########CHART#########
    if (feat_chart):
        with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
            chartDic = pickle.load(fp)

        if chart:
            charts=chart['val']
            feat=charts.keys()
            chart_val=[charts[key] for key in feat]
            charts=pd.DataFrame(chartDic,columns=['CHART'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
            features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
            
            chart=pd.DataFrame(columns=feat)
            for c,v in zip(feat,chart_val):
                chart[c]=v
            chart.columns=pd.MultiIndex.from_product([["CHART"], chart.columns])
            chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
        else:
            charts=pd.DataFrame(chartDic,columns=['CHART'])
            features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
            features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
            chart_df=features.fillna(0)
    
    ###MEDS
    if (feat_meds):
        with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
                medDic = pickle.load(fp)

        if meds:
            feat=meds['signal'].keys()
            med_val=[meds['amount'][key] for key in feat]
            meds=pd.DataFrame(medDic,columns=['MEDS'])
            features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
            features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
            
            med=pd.DataFrame(columns=feat)
            for m,v in zip(feat,med_val):
                med[m]=v
            med.columns=pd.MultiIndex.from_product([["MEDS"], med.columns])
            meds_df = pd.concat([features,med],ignore_index=True).fillna(0)
        else:
            meds=pd.DataFrame(medDic,columns=['MEDS'])
            features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
            features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
            meds_df=features.fillna(0)

    dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
    return dyn_df,cond_df,demo

def getXY(dyn,stat,demo,concat_cols,concat):
    X_df=pd.DataFrame()
    if concat:
        dyna=dyn.copy()
        dyna.columns=dyna.columns.droplevel(0)
        dyna=dyna.to_numpy()
        dyna=dyna.reshape(1,-1)
        dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
    else:
        dyn_df=pd.DataFrame()
        for key in dyn.columns.levels[0]:     
            dyn_temp=dyn[key]
            if ((key=="CHART") or (key=="MEDS")):
                agg=dyn_temp.aggregate("mean")
                agg=agg.reset_index()
            else:
                agg=dyn_temp.aggregate("max")
                agg=agg.reset_index()

            if dyn_df.empty:
                dyn_df=agg
            else:
                dyn_df=pd.concat([dyn_df,agg],axis=0)
        dyn_df=dyn_df.T
        dyn_df.columns = dyn_df.iloc[0]
        dyn_df=dyn_df.iloc[1:,:]
        
    X_df=pd.concat([dyn_df,stat],axis=1)
    X_df=pd.concat([X_df,demo],axis=1)
    return X_df    

def encoding(X_data):
    gen_encoder = LabelEncoder()
    eth_encoder = LabelEncoder()
    ins_encoder = LabelEncoder()
    gen_encoder.fit(X_data['gender'])
    eth_encoder.fit(X_data['ethnicity'])
    ins_encoder.fit(X_data['insurance'])
    X_data['gender']=gen_encoder.transform(X_data['gender'])
    X_data['ethnicity']=eth_encoder.transform(X_data['ethnicity'])
    X_data['insurance']=ins_encoder.transform(X_data['insurance'])
    return X_data

def generate_split(path,task,concat,feat_cond=True,feat_chart=True,feat_proc=True, feat_meds=True, feat_out=False):
    with open(path, 'rb') as fp:
        dico = pickle.load(fp)
    df = pd.DataFrame.from_dict(dico, orient='index')
    X_df=pd.DataFrame()   
    #y_df=pd.DataFrame(df['label'],columns=['label'])
    taskf=task.replace(" ","_")
    for _, data in tqdm(df.iterrows(),desc='Encoding Data for '+task+' task'):
        concat_cols=[]
        sample=data
        dyn_df,cond_df,demo=onehot(sample,taskf,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
        dyn=dyn_df.copy()
        dyn.columns=dyn.columns.droplevel(0)
        cols=dyn.columns
        time=dyn.shape[0]
        for t in range(time):
            cols_t = [str(x) + "_"+str(t) for x in cols]
            concat_cols.extend(cols_t)
        
        X= getXY(dyn_df,cond_df,demo,concat_cols,concat)
        if X_df.empty:
             X_df=pd.concat([X_df,X],axis=1)
        else:
            X_df = pd.concat([X_df, X], axis=0)
    X_df=X_df.fillna(0) 
    X_df = encoding(X_df)
    #X_df=X_df.drop(['label'], axis=1)
    return X_df


class Mimic4DatasetConfig(datasets.BuilderConfig):
    """BuilderConfig for Mimic4Dataset."""

    def __init__(
        self,
        **kwargs,
    ):
        super().__init__(**kwargs)
        
class Mimic4Dataset(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    def __init__(self, **kwargs):
        self.mimic_path = kwargs.pop("mimic_path", None)
        self.encoding = kwargs.pop("encoding",True)
        self.config_path = kwargs.pop("config_path",None)
        self.test_size = kwargs.pop("test_size",0.2)
        self.val_size = kwargs.pop("val_size",0.1)

        super().__init__(**kwargs)
        
        
    BUILDER_CONFIGS = [
        Mimic4DatasetConfig(
            name="Phenotype",
            version=VERSION,
            description="Dataset for mimic4 Phenotype task"
        ),
        Mimic4DatasetConfig(
            name="Readmission",
            version=VERSION,
            description="Dataset for mimic4 Readmission task"
        ),
        Mimic4DatasetConfig(
            name="Length of Stay",
            version=VERSION,
            description="Dataset for mimic4 Length of Stay task"
        ),
        Mimic4DatasetConfig(
            name="Mortality",
            version=VERSION,
            description="Dataset for mimic4 Mortality task"
        ),
        Mimic4DatasetConfig(
            name="Phenotype Custom",
            version=VERSION,
            description="Dataset for mimic4 Custom Phenotype task"
        ),
        Mimic4DatasetConfig(
            name="Readmission Custom",
            version=VERSION,
            description="Dataset for mimic4 Custom Readmission task"
        ),
        Mimic4DatasetConfig(
            name="Length of Stay Custom",
            version=VERSION,
            description="Dataset for mimic4 Custom Length of Stay task"
        ),
        Mimic4DatasetConfig(
            name="Mortality Custom",
            version=VERSION,
            description="Dataset for mimic4 Custom Mortality task"
        ),
    ]

    DEFAULT_CONFIG_NAME = "Mortality"

    def map_dtype(self,dtype):
        if pd.api.types.is_integer_dtype(dtype):
            return datasets.Value('int64')
        elif pd.api.types.is_float_dtype(dtype):
            return datasets.Value('float64')
        elif pd.api.types.is_string_dtype(dtype):
            return datasets.Value('string')
        else:
            raise ValueError(f"Unsupported dtype: {dtype}")
        
    def create_cohort(self):
        if self.config.name == 'Phenotype' : self.config_path = _CONFIG_URLS['phenotype'] 
        if self.config.name == 'Readmission' : self.config_path = _CONFIG_URLS['readmission'] 
        if self.config.name == 'Length of Stay' : self.config_path = _CONFIG_URLS['los'] 
        if self.config.name == 'Mortality' : self.config_path = _CONFIG_URLS['mortality']
        if self.config.name in ['Phenotype Custom','Readmission Custom','Length of Stay Custom','Mortality Custom'] and self.config.name==None:
            raise ValueError('Please provide a config file')
        
        version = self.mimic_path.split('/')[-1]
        m = self.mimic_path.split('/')[-2]
        s='/'+m+'/'+version
        
        current_directory = os.getcwd()
        if os.path.exists(os.path.dirname(current_directory)+'/MIMIC-IV-Data-Pipeline-main'):
            dir =os.path.dirname(current_directory) 
            os.chdir(dir)
        else:
            #move to parent directory of mimic data
            dir = self.mimic_path.replace(s,'')
            if dir[-1]!='/':
                dir=dir+'/'
            elif dir=='':
                dir="./"
            parent_dir = os.path.dirname(self.mimic_path)
            os.chdir(parent_dir)

        #clone git repo if doesnt exists
        repo_url='https://github.com/healthylaife/MIMIC-IV-Data-Pipeline'
        if os.path.exists('MIMIC-IV-Data-Pipeline-main'):
            path_bench = './MIMIC-IV-Data-Pipeline-main'
        else:
            path_bench ='./MIMIC-IV-Data-Pipeline-main'
            subprocess.run(["git", "clone", repo_url, path_bench])
            os.makedirs(path_bench+'/mimic-iv')
            shutil.move(version,path_bench+'/mimic-iv')

        os.chdir(path_bench)
        self.mimic_path = './mimic-iv/'+version

        #download config file if not custom
        if self.config_path[0:4] == 'http':
            c = self.config_path.split('/')[-1]
            file_path, head = urlretrieve(self.config_path,c)
        else :
            file_path = self.config_path

        #create config folder
        if not os.path.exists('./config'):
            os.makedirs('config')
        #save config file in config folder
        conf='./config/'+file_path.split('/')[-1]

        if not os.path.exists(conf):
            shutil.move(file_path,'./config')

        #downloads modules from hub
        if not os.path.exists('./model/data_generation_icu_modify.py'):
            file_path, head = urlretrieve(_DATA_GEN, "data_generation_icu_modify.py")
            shutil.move(file_path, './model')

        if not os.path.exists('./preprocessing/day_intervals_preproc/day_intervals_cohort_v22.py'):
            file_path, head = urlretrieve(_DAY_INT, "day_intervals_cohort_v22.py")
            shutil.move(file_path, './preprocessing/day_intervals_preproc')
            
        file_path, head = urlretrieve(_COHORT, "cohort.py")
        if not os.path.exists('cohort.py'):
            shutil.move(file_path, './')
            
        data_dir = "./data/dict/"+self.config.name.replace(" ","_")+"/dataDic"
        sys.path.append(path_bench)
        config = self.config_path.split('/')[-1]

        script = 'python cohort.py '+ self.config.name.replace(" ","_") +" "+ self.mimic_path+ " "+path_bench+ " "+config
        
        #####################################CHANGE##########
        if not os.path.exists(data_dir) :
            os.system(script)       
        #####################################CHANGE##########
        config_path='./config/'+config
        with open(config_path) as f:
            config = yaml.safe_load(f)
        feat_cond, feat_chart, feat_proc, feat_meds, feat_out = config['diagnosis'], config['chart'], config['proc'],  config['meds'], config['output']

        with open(data_dir, 'rb') as fp:
            dataDic = pickle.load(fp)
        data = pd.DataFrame.from_dict(dataDic)
       
        data=data.T
        train_data, test_data = train_test_split(data, test_size=self.test_size, random_state=42)
        train_data, val_data = train_test_split(test_data, test_size=self.val_size, random_state=42)
        
        dict_dir = "./data/dict/"+self.config.name.replace(" ","_")
        train_dic = train_data.to_dict('index')
        test_dic = test_data.to_dict('index')
        val_dic = val_data.to_dict('index')

        train_path = dict_dir+'/train_data.pkl'
        test_path = dict_dir+'/test_data.pkl'
        val_path = dict_dir+'/val_data.pkl'
        
        with open(train_path, 'wb') as f:
            pickle.dump(train_dic, f)
        with open(val_path, 'wb') as f:
            pickle.dump(val_dic, f)
        with open(test_path, 'wb') as f:
            pickle.dump(test_dic, f)

        
        return feat_cond, feat_chart, feat_proc, feat_meds, feat_out, dict_dir
  
###########################################################RAW##################################################################

    def _info_raw(self):
        features = datasets.Features(
            {
                "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
                "gender": datasets.Value("string"),
                "ethnicity": datasets.Value("string"),
                "insurance": datasets.Value("string"),
                "age": datasets.Value("int32"),
                "COND": datasets.Sequence(datasets.Value("string")),
                "MEDS": {
                            "signal": 
                                {
                                    "id": datasets.Sequence(datasets.Value("int32")),
                                    "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                }
                            ,
                            "rate": 
                                {
                                    "id": datasets.Sequence(datasets.Value("int32")),
                                    "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                }
                            ,
                            "amount": 
                                {
                                    "id": datasets.Sequence(datasets.Value("int32")),
                                    "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                }
                            
                        },
                "PROC":  {
                            "id": datasets.Sequence(datasets.Value("int32")),
                            "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                },
                "CHART":
                    {
                        "signal" : {
                            "id": datasets.Sequence(datasets.Value("int32")),
                            "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                },
                        "val" : {
                            "id": datasets.Sequence(datasets.Value("int32")),
                            "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                },
                    },
                "OUT":  {
                            "id": datasets.Sequence(datasets.Value("int32")),
                            "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                },
                
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def __split_generators_raw(self):
        
        csv_dir = "./data/dict/"+self.config.name.replace(" ","_")

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": csv_dir+'/train_data.pkl'}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": csv_dir+'/val_data.pkl'}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": csv_dir+'/test_data.pkl'}),
        ]

    def _generate_examples_raw(self, filepath):
        with open(filepath, 'rb') as fp:
            dataDic = pickle.load(fp)
        for hid, data in dataDic.items():
            proc_features = data['Proc']
            chart_features = data['Chart']
            meds_features = data['Med']
            out_features = data['Out']
            cond_features = data['Cond']['fids']
            eth= data['ethnicity']
            age = data['age']
            gender = data['gender']
            label = data['label']
            insurance=data['insurance']
            
            items = list(proc_features.keys())
            values =[proc_features[i] for i in items ]
            procs = {"id" : items,
                  "value": values}
            
            items_outs = list(out_features.keys())
            values_outs =[out_features[i] for i in items_outs ]
            outs = {"id" : items_outs,
                  "value": values_outs}

            #chart signal
            if ('signal' in chart_features):
                items_chart_sig = list(chart_features['signal'].keys())
                values_chart_sig =[chart_features['signal'][i] for i in items_chart_sig ]
                chart_sig = {"id" : items_chart_sig,
                        "value": values_chart_sig}
            else:
                chart_sig = {"id" : [],
                        "value": []}
            #chart val
            if ('val' in chart_features):
                items_chart_val = list(chart_features['val'].keys())
                values_chart_val =[chart_features['val'][i] for i in items_chart_val ]
                chart_val = {"id" : items_chart_val,
                        "value": values_chart_val}
            else:
                chart_val = {"id" : [],
                        "value": []}
                
            charts = {"signal" : chart_sig,
                    "val" : chart_val}

            #meds signal
            if ('signal' in meds_features):
                items_meds_sig = list(meds_features['signal'].keys())
                values_meds_sig =[meds_features['signal'][i] for i in items_meds_sig ]
                meds_sig = {"id" : items_meds_sig,
                    "value": values_meds_sig}
            else:
                meds_sig = {"id" : [],
                    "value": []}
            #meds rate
            if ('rate' in meds_features):
                items_meds_rate = list(meds_features['rate'].keys())
                values_meds_rate =[meds_features['rate'][i] for i in items_meds_rate ]
                meds_rate = {"id" : items_meds_rate,
                        "value": values_meds_rate}
            else:
                meds_rate = {"id" : [],
                        "value": []}
            #meds amount
            if ('amount' in meds_features):
                items_meds_amount = list(meds_features['amount'].keys())
                values_meds_amount =[meds_features['amount'][i] for i in items_meds_amount ]
                meds_amount = {"id" : items_meds_amount,
                        "value": values_meds_amount}
            else:
                meds_amount = {"id" : [],
                        "value": []}
            
            meds = {"signal" : meds_sig,
                    "rate" : meds_rate,
                    "amount" : meds_amount}
            
            yield int(hid), {
                "label" : label,
                "gender" : gender,
                "ethnicity" : eth,
                "insurance" : insurance,
                "age" : age,
                "COND" : cond_features,
                "PROC" : procs,
                "CHART" : charts,
                "OUT" : outs,
                "MEDS" : meds
            }


###########################################################ENCODED##################################################################
       
    def _info_encoded(self,X_encoded):
        columns = {col: self.map_dtype(X_encoded[col].dtype) for col in X_encoded.columns}
        features = datasets.Features(columns)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )
    
    def __split_generators_encoded(self):
        data_dir = "./data/dict/"+self.config.name.replace(" ","_")

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/X_train_encoded.csv'}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir+'/X_val_encoded.csv'}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/X_test_encoded.csv'}),
            ]

    def _generate_examples_encoded(self, filepath):
        df = pd.read_csv(filepath, header=0)
        for i, row in df.iterrows():
            yield i, row.to_dict()
        

#############################################################################################################################
    def _info(self):
        self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out,self.path = self.create_cohort()

        if self.encoding :
            X_train_encoded=generate_split(self.path+'/train_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
            X_test_encoded=generate_split(self.path+'/test_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
            X_val_encoded=generate_split(self.path+'/val_data.pkl',self.config.name,True,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
            
            X_train_encoded.to_csv(self.path+"/X_train_encoded.csv", index=False)
            X_test_encoded.to_csv(self.path+"/X_test_encoded.csv", index=False)
            X_val_encoded.to_csv(self.path+"/X_val_encoded.csv", index=False)
            return self._info_encoded(X_train_encoded)
        else:
            return self._info_raw()

    def _split_generators(self, dl_manager):
        if self.encoding :
            return self.__split_generators_encoded()
        else:
            return self.__split_generators_raw()

    def _generate_examples(self, filepath):
        if not self.encoding :
            yield from self._generate_examples_raw(filepath)
        else:
            yield from self._generate_examples_encoded(filepath)