File size: 18,836 Bytes
0715d07
 
 
 
 
 
 
 
 
 
086d60c
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac86bd6
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac86bd6
 
 
 
 
0715d07
 
 
 
 
 
ac86bd6
0715d07
ac86bd6
 
 
 
 
0715d07
 
 
 
185c4f8
0715d07
 
 
 
 
beb281e
 
 
 
 
 
464b223
a408f8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356147c
 
 
 
a408f8a
356147c
 
 
 
 
 
a7e01a6
 
dc19c13
 
beb281e
dc19c13
a7e01a6
 
 
 
 
dc19c13
a7e01a6
3cd711b
a7e01a6
 
 
 
 
3cd711b
a7e01a6
 
3cd711b
7ca333b
a7e01a6
 
8f4b0f4
dc19c13
 
beb281e
dc19c13
afa872b
dc19c13
a7e01a6
 
 
 
8f4b0f4
dc19c13
a7e01a6
3cd711b
a7e01a6
 
 
 
 
3cd711b
a7e01a6
 
3cd711b
f233cf2
7ca333b
21dd5f4
 
1735cb3
 
25bf21a
1735cb3
 
a6e721c
1735cb3
 
 
 
a6e721c
b9941e4
a6e721c
b9941e4
 
 
 
25bf21a
9bdd6a2
356147c
cf866f4
 
beb281e
 
 
 
 
eb4c5dd
beb281e
 
eb4c5dd
beb281e
 
 
 
 
 
 
 
 
 
 
 
59c6357
beb281e
 
 
 
 
 
 
bfbe04c
beb281e
 
 
 
 
df8df97
 
 
 
 
 
 
 
 
d7d9984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df8df97
 
 
d7d9984
df8df97
d7d9984
 
 
 
 
 
df8df97
d7d9984
 
 
df8df97
 
beb281e
0715d07
 
 
 
ac86bd6
 
 
beb281e
7ca333b
beb281e
ac86bd6
beb281e
a7e01a6
fd21c0a
7ca333b
fd21c0a
 
 
beb281e
a7e01a6
fd21c0a
 
0feec6e
b9941e4
75843e6
a408f8a
 
fd21c0a
ef0edc1
fd21c0a
 
 
 
7ca333b
fd21c0a
a9d4519
df8df97
f09ba10
 
4c13399
 
b5074cf
8f4b0f4
b5074cf
4c13399
4311f3f
320fde3
4944be6
 
 
df8df97
ac86bd6
73dfd2e
beb281e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import gradio as gr
import torch
import json
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, RobertaForTokenClassification
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from json import JSONEncoder
from faker import Faker
from keras.utils import pad_sequences
class out_json():
    def __init__(self, w,l):
        self.word = w
        self.label = l
class MyEncoder(JSONEncoder):
        def default(self, o):
            return o.__dict__
class Model:
   def __init__(self):
        self.texto=""
        self.idioma=""
        self.modelo_ner=""
        self.categoria_texto=""
        
   def identificacion_idioma(self,text): 
        self.texto=text
        tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
        model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
        
        inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
        
        with torch.no_grad():
            logits = model(**inputs).logits
        
        preds = torch.softmax(logits, dim=-1)
        
       
        id2lang = model.config.id2label
        vals, idxs = torch.max(preds, dim=1)
        
       
        
        #retorna el idioma con mayor porcentaje
        maximo=vals.max()
        idioma=''
        porcentaje=0
        for k, v in zip(idxs, vals):
           if v.item()==maximo:
             idioma,porcentaje=id2lang[k.item()],v.item()
             
           
        if idioma=='es':
             self.idioma="es"
             self.modelo_ner='BSC-LT/roberta_model_for_anonimization'
             self.faker_ = Faker('es_MX')
             self.model = RobertaForTokenClassification.from_pretrained(self.modelo_ner)     
        else:
             self.idioma="en"
             self.faker_ = Faker('en_US')
             self.modelo_ner="FacebookAI/xlm-roberta-large-finetuned-conll03-english"     
             self.model = AutoModelForTokenClassification.from_pretrained(self.modelo_ner)   
        self.categorizar_texto(self.texto)
   def reordenacion_tokens(self,tokens):
        
        i=0
        new_tokens=[]
        ig_tokens=[] #ignorar estos indices del array de indentificadores
        for token in tokens:
            ind=len(new_tokens)
            if i<len(tokens):
                 if  token.startswith("▁"):
                    
                    new_tokens.append(token)
                    
                    i=i+1
                 else:
                    new_tokens[ind-1] = (new_tokens[ind-1] + token)
                    ig_tokens.append(i)
                    
                    i=i+1
        return (
                new_tokens,
                ig_tokens
                )  
        
   def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes):
        x=0
        new_identificadores=[]
        for token in predicted_tokens_classes:
            
            if x not in ig_tokens:
                new_identificadores.append(token)
                x=x+1
            else:
                 x=x+1
        return new_identificadores
   def salida_json(self,tokens,pre_tokens):
       list=[]
       i=0
       for t in tokens:
           if pre_tokens[i]!='O':
              a = out_json(t.replace('▁','').replace('Ġ',''),pre_tokens[i].replace('▁',''))
              list.append(a)
           i=i+1
       return MyEncoder().encode(list)   
   def salida_texto( self,tokens,pre_tokens):
        new_labels = []
        current_word = None
        i=0
        for token in tokens:
               
            if pre_tokens[i]=='O' or 'MISC' in pre_tokens[i]:
              new_labels.append(' ' +token.replace('▁',''))
            else:
               new_labels.append(' ' + pre_tokens[i])
            i=i+1 
        a=''    
        for i in new_labels:
            a = a+i
        return a    
        #return new_labels  
   def salida_texto_anonimizado(self, ids,pre_tokens):
    new_labels = []
    current_word = None
    i=0
    for identificador in pre_tokens:
       
        if identificador=='O' or 'OTH' in identificador:
            new_labels.append(self.tokenizer.decode(ids[i]))
        else:
            new_labels.append(' ' + identificador)
        i=i+1
    a=''
    for i in new_labels:
        a = a+i
    return a    
   def formato_salida(self,out):
       a=""
       for i in out:
          a = a + i.replace('▁','').replace(' ','') + ' '
       return  a  
   def fake_pers(self):
       return self.faker_.name(self)
   def fake_word(self):
       return self.faker_.word()
   def fake_first_name(self):
       return self.faker_.first_name()       
   def fake_last_name(self):
       return self.faker_.last_name()    
   def fake_address(self):
       return self.faker_.address()
   def fake_sentence(self,n):
       return self.faker_.sentence(nb_words=n)
   def fake_text(self):
       return self.faker_.text()
   def fake_company(self):
       return self.faker_.company() 
   def fake_city(self):
       return self.faker_.city()     
   def reemplazo_fake(self,identificadores):
       new_iden=[]
       for id in identificadores:
           
           if 'PER' in id:
               new_iden.append(self.fake_first_name())
           
           elif 'ORG' in id:
               new_iden.append(self.fake_company())
           
           elif 'LOC' in id:
               new_iden.append(self.fake_city())
           else:
               new_iden.append(id)
       return new_iden
   def categorizar_texto(self,texto):
        name="elozano/bert-base-cased-news-category"       
        tokenizer = AutoTokenizer.from_pretrained(name)
        model_ = AutoModelForSequenceClassification.from_pretrained(name)
        
        inputs_ = tokenizer(texto, padding=True, truncation=True, return_tensors="pt")
        
        with torch.no_grad():
            logits = model_(**inputs_).logits
        
        preds = torch.softmax(logits, dim=-1)
        
       
        id2lang = model_.config.id2label
        vals, idxs = torch.max(preds, dim=1)
        
        #retorna el idioma con mayor porcentaje
        maximo=vals.max()
        cat=''
        self.categoria_texto=''
        porcentaje=0
        for k, v in zip(idxs, vals):
           if v.item()==maximo:
             cat,porcentaje=id2lang[k.item()],v.item()
             self.categoria_texto=cat  
             
        
        return  cat, porcentaje      
   def predict(self,etiquetas):
        
        categoria, porcentaje = self.categorizar_texto(self.texto)
        print(categoria, porcentaje)
       
        self.tokenizer  = AutoTokenizer.from_pretrained(self.modelo_ner)
        tokens = self.tokenizer.tokenize(self.texto)
       
        ids = self.tokenizer.convert_tokens_to_ids(tokens)
        
        input_ids = torch.tensor([ids])
        with torch.no_grad():
           logits = self.model(input_ids).logits
        
        predicted_token_class_ids = logits.argmax(-1)
        
        predicted_tokens_classes = [self.model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
        
        labels = predicted_token_class_ids
        loss = self.model(input_ids, labels=labels).loss
      
        if (self.idioma=='es'):
            
           
            out1 = self.salida_json(tokens,predicted_tokens_classes) #spanish solo palabras sensibles

            if etiquetas:            
                out2 = self.salida_texto_anonimizado(ids,predicted_tokens_classes) #solo identificadores
            else:    
                out2 = self.salida_texto_anonimizado(ids,self.reemplazo_fake(predicted_tokens_classes)) #español texto completo    
            
        else:
            
            new_tokens,ig_tokens=self.reordenacion_tokens(tokens)
            new_identificadores = self.reordenacion_identificadores(ig_tokens,predicted_tokens_classes)
           
              
            
            out1 = self.salida_json(new_tokens,new_identificadores),
            if etiquetas: 
                out2 = self.salida_texto(new_tokens,new_identificadores)#solo identificadores
            else:
                out2 = self.salida_texto(new_tokens,self.reemplazo_fake(new_identificadores))
            
           
        return (
          
            
            out1,
            str(out2)
           
            
        )  
class ModeloDataset:
    def __init__(self):
        self.texto=""
        self.idioma=""
        self.modelo_ner=""
        self.categoria_texto=""
        self.tokenizer  = AutoTokenizer.from_pretrained("BSC-LT/roberta_model_for_anonimization")
    def reordenacion_tokens(self,tokens):
        
        i=0
        new_tokens=[]
        ig_tokens=[] #ignorar estos indices del array de indentificadores
        for token in tokens:
            ind=len(new_tokens)
            if i<len(tokens):
                 if  token.startswith("▁"):
                    
                    new_tokens.append(token)
                    
                    i=i+1
                 else:
                    new_tokens[ind-1] = (new_tokens[ind-1] + token)
                    ig_tokens.append(i)
                    
                    i=i+1
        return (
                new_tokens,
                ig_tokens
                )  
    def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes):
        x=0
        new_identificadores=[]
        for token in predicted_tokens_classes:
            
            if x not in ig_tokens:
                new_identificadores.append(token)
                x=x+1
            else:
                 x=x+1
        return new_identificadores           
    def aplicar_modelo(self,_sentences,idioma):
        if idioma=="es":
            self.tokenizer = AutoTokenizer.from_pretrained("BSC-LT/roberta_model_for_anonimization")
            tokenized_text=[self.tokenizer.tokenize(sentence) for sentence in _sentences]
        
            ids = [self.tokenizer.convert_tokens_to_ids(x) for x in tokenized_text]   
            MAX_LEN=128
            ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
            input_ids = torch.tensor(ids) 
            #model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")   
                   
            self.model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
            with torch.no_grad():
             logits = self.model(input_ids).logits
            predicted_token_class_ids = logits.argmax(-1)
            i=0
            _predicted_tokens_classes=[]
            for a in predicted_token_class_ids:
                    #_predicted_tokens_classes[i]=[model.config.id2label[t.item()] for t in predicted_token_class_ids[i]]
                    _predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
                    i=i+1  
            labels = predicted_token_class_ids
            loss = self.model(input_ids, labels=labels).loss
            
        else:
            
            print('idioma:',idioma)            
            self.tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
            tokenized_text=[self.tokenizer.tokenize(sentence) for sentence in _sentences]
        
            ids = [self.tokenizer.convert_tokens_to_ids(x) for x in tokenized_text]
            

            MAX_LEN=128
            ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
            input_ids = torch.tensor(ids) 
            
                    
            self.model = AutoModelForTokenClassification.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
            with torch.no_grad():
             logits = self.model(input_ids).logits
            predicted_token_class_ids = logits.argmax(-1)
            i=0
            _predicted_tokens_classes=[]
            for a in predicted_token_class_ids:
                    #_predicted_tokens_classes[i]=[model.config.id2label[t.item()] for t in predicted_token_class_ids[i]]
                    _predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
                    i=i+1  
            labels = predicted_token_class_ids
            loss = self.model(input_ids, labels=labels).loss
            
            
            
            
            new_tokens=[]
            ig_tok=[]
            i=0
            new_identificadores=[]
            for item in tokenized_text:
               print('len(tokens)',len(item))
               aux1, aux2= self.reordenacion_tokens(item)
               new_tokens.append(aux1)
               ig_tok.append(aux2)
            print('new_tokens',new_tokens)  
            print('ig_tok',ig_tok) 
            
            for items in _predicted_tokens_classes:
                if i<len(tokenized_text[i]):
                    print('len(_predicted_tokens_classes)',len(items))
                    aux=self.reordenacion_identificadores(ig_tok[i],items)
                    new_identificadores.append(aux)
                i=i+1
            print('new_identificadores',new_identificadores)
           
        #return new_identificadores, new_tokens
        return ids, _predicted_tokens_classes
    def salida_texto( self,ids,pre_tokens):
        new_labels = []
        current_word = None
        i=0
        for identificador in pre_tokens:
            if (self.tokenizer.decode(ids[i])!="<s>"):
                if identificador=='O':
                    
                    new_labels.append(self.tokenizer.decode(ids[i]))
                else:
                    new_labels.append(' ' + identificador)
            i=i+1  
            
        return new_labels    
    
    def salida_texto2(self, ids,pre_tokens):
        i=0
        out=[]
        for iden in pre_tokens:
          if i<len(ids):
           
           out.append(self.salida_texto( ids[i],np.array(pre_tokens[i])) )
           i=i+1
        
        return out    
    def unir_array(self,_out):
        i=0
        salida=[]
        for item in _out:
            salida.append(" ".join(str(x) for x in _out[i]))
            i=i+1
        return salida
    def unir_columna_valores(self,df,columna):
        out = ','.join(df[columna])
        return out
class utilJSON:
    def __init__(self,archivo):
      with open(archivo, encoding='utf-8') as f:
         self.data = json.load(f)
    def obtener_keys_json(self,data):
     out=[]
     for key in data:
        out.append(key)
     return(out)
    ###
    ### funcion "flatten_json" tomada de https://levelup.gitconnected.com/a-deep-dive-into-nested-json-to-data-frame-with-python-69bdabb41938 
    ### Renu Khandelwal Jul 23, 2023
    def flatten_json(self,y):
        try:
            out = {}
    
            def flatten(x, name=''):
                if type(x) is dict:
                    for a in x:
                        flatten(x[a], name + a + '_')
                elif type(x) is list:
                    i = 0
                    for a in x:
                        flatten(a, name + str(i) + '_')
                        i += 1
                else:
                    out[name[:-1]] = x
    
            flatten(y)
            return out
        except json.JSONDecodeError:
            print("Error: The JSON document could not be decoded.")
        except TypeError:
            print("Error: Invalid operation or function argument type.")
        except KeyError:
            print("Error: One or more keys do not exist.")
        except ValueError:
            print("Error: Invalid value detected.")
        except Exception as e:
            # Catch any other exceptions
            print(f"An unexpected error occurred: {str(e)}") 
        
    def obtener_dataframe(self,data):
        claves=self.obtener_keys_json(data)
        print(claves)
        if len(claves)==1:
           
            #Flatten nested dictionaries and lists
            data_flattened = [self.flatten_json(class_info) for class_info in data[claves[0]]]
            # Create DataFrame from flattened JSON
            df = pd.DataFrame(data_flattened)
           
        else:
            #df = pd.json_normalize(data)
            data_flattened = [self.flatten_json(class_info) for class_info in data]
            df = pd.DataFrame(data_flattened)
            
        return df
modelo = ModeloDataset()
model = Model()
def get_model():
        return model

def procesar(texto,archivo, etiquetas):
    
    
    if len(texto)>0: 
        print('text')
        model.identificacion_idioma(texto)
        return model.predict(etiquetas),gr.Dataframe(),gr.File()
    else:

        if archivo.name.split(".")[1]=="csv":
            print('csv')
            df=pd.read_csv(archivo.name,delimiter=",")
        
            df_new = pd.DataFrame( columns=df.columns.values)
            

            for item in df.columns.values:
                sentences=df[item]
                model.identificacion_idioma(sentences[0])
                #print('sentences',sentences)
                ides, predicted = modelo.aplicar_modelo(sentences,model.idioma)

                
                out=modelo.salida_texto2( ides,predicted)
                print('out:',out)
                df_new[item] = modelo.unir_array(out)
            return "", df_new, df_new.to_csv(sep='\t', encoding='utf-8',index=False)
            #return "", df_new, df_new.to_excel( index=False)
        else:
            print('json')
            if archivo.name.split(".")[1]=="json":
                util = utilJSON(archivo.name)        
                df=util.obtener_dataframe(util.data)
                df_new = pd.DataFrame( columns=df.columns.values)
                
                for item in df.columns.values:
                    sentences=df[item]
                    print('item antes de aplicar modelo',item)
                    ides, predicted = modelo.aplicar_modelo(sentences,"en")
                    print('despues de aplicar modelo')
                    out=modelo.salida_texto2( ides,predicted)
                
                    df_new[item] = modelo.unir_array(out)

                #return "", df, df.to_csv(sep='\t', encoding='utf-8',index=False) 
                return "", df_new, df_new.to_csv(sep='\t', encoding='utf-8',index=False)
            
demo = gr.Interface(fn=procesar,inputs=["text",gr.File(), "checkbox"] , outputs=["text",gr.Dataframe(interactive=False),"text"])
       #                                                      
demo.launch(share=True)