Spaces:
Sleeping
Sleeping
File size: 18,836 Bytes
0715d07 086d60c 0715d07 ac86bd6 0715d07 ac86bd6 0715d07 ac86bd6 0715d07 ac86bd6 0715d07 185c4f8 0715d07 beb281e 464b223 a408f8a 356147c a408f8a 356147c a7e01a6 dc19c13 beb281e dc19c13 a7e01a6 dc19c13 a7e01a6 3cd711b a7e01a6 3cd711b a7e01a6 3cd711b 7ca333b a7e01a6 8f4b0f4 dc19c13 beb281e dc19c13 afa872b dc19c13 a7e01a6 8f4b0f4 dc19c13 a7e01a6 3cd711b a7e01a6 3cd711b a7e01a6 3cd711b f233cf2 7ca333b 21dd5f4 1735cb3 25bf21a 1735cb3 a6e721c 1735cb3 a6e721c b9941e4 a6e721c b9941e4 25bf21a 9bdd6a2 356147c cf866f4 beb281e eb4c5dd beb281e eb4c5dd beb281e 59c6357 beb281e bfbe04c beb281e df8df97 d7d9984 df8df97 d7d9984 df8df97 d7d9984 df8df97 d7d9984 df8df97 beb281e 0715d07 ac86bd6 beb281e 7ca333b beb281e ac86bd6 beb281e a7e01a6 fd21c0a 7ca333b fd21c0a beb281e a7e01a6 fd21c0a 0feec6e b9941e4 75843e6 a408f8a fd21c0a ef0edc1 fd21c0a 7ca333b fd21c0a a9d4519 df8df97 f09ba10 4c13399 b5074cf 8f4b0f4 b5074cf 4c13399 4311f3f 320fde3 4944be6 df8df97 ac86bd6 73dfd2e beb281e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import gradio as gr
import torch
import json
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, RobertaForTokenClassification
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from json import JSONEncoder
from faker import Faker
from keras.utils import pad_sequences
class out_json():
def __init__(self, w,l):
self.word = w
self.label = l
class MyEncoder(JSONEncoder):
def default(self, o):
return o.__dict__
class Model:
def __init__(self):
self.texto=""
self.idioma=""
self.modelo_ner=""
self.categoria_texto=""
def identificacion_idioma(self,text):
self.texto=text
tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
preds = torch.softmax(logits, dim=-1)
id2lang = model.config.id2label
vals, idxs = torch.max(preds, dim=1)
#retorna el idioma con mayor porcentaje
maximo=vals.max()
idioma=''
porcentaje=0
for k, v in zip(idxs, vals):
if v.item()==maximo:
idioma,porcentaje=id2lang[k.item()],v.item()
if idioma=='es':
self.idioma="es"
self.modelo_ner='BSC-LT/roberta_model_for_anonimization'
self.faker_ = Faker('es_MX')
self.model = RobertaForTokenClassification.from_pretrained(self.modelo_ner)
else:
self.idioma="en"
self.faker_ = Faker('en_US')
self.modelo_ner="FacebookAI/xlm-roberta-large-finetuned-conll03-english"
self.model = AutoModelForTokenClassification.from_pretrained(self.modelo_ner)
self.categorizar_texto(self.texto)
def reordenacion_tokens(self,tokens):
i=0
new_tokens=[]
ig_tokens=[] #ignorar estos indices del array de indentificadores
for token in tokens:
ind=len(new_tokens)
if i<len(tokens):
if token.startswith("▁"):
new_tokens.append(token)
i=i+1
else:
new_tokens[ind-1] = (new_tokens[ind-1] + token)
ig_tokens.append(i)
i=i+1
return (
new_tokens,
ig_tokens
)
def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes):
x=0
new_identificadores=[]
for token in predicted_tokens_classes:
if x not in ig_tokens:
new_identificadores.append(token)
x=x+1
else:
x=x+1
return new_identificadores
def salida_json(self,tokens,pre_tokens):
list=[]
i=0
for t in tokens:
if pre_tokens[i]!='O':
a = out_json(t.replace('▁','').replace('Ġ',''),pre_tokens[i].replace('▁',''))
list.append(a)
i=i+1
return MyEncoder().encode(list)
def salida_texto( self,tokens,pre_tokens):
new_labels = []
current_word = None
i=0
for token in tokens:
if pre_tokens[i]=='O' or 'MISC' in pre_tokens[i]:
new_labels.append(' ' +token.replace('▁',''))
else:
new_labels.append(' ' + pre_tokens[i])
i=i+1
a=''
for i in new_labels:
a = a+i
return a
#return new_labels
def salida_texto_anonimizado(self, ids,pre_tokens):
new_labels = []
current_word = None
i=0
for identificador in pre_tokens:
if identificador=='O' or 'OTH' in identificador:
new_labels.append(self.tokenizer.decode(ids[i]))
else:
new_labels.append(' ' + identificador)
i=i+1
a=''
for i in new_labels:
a = a+i
return a
def formato_salida(self,out):
a=""
for i in out:
a = a + i.replace('▁','').replace(' ','') + ' '
return a
def fake_pers(self):
return self.faker_.name(self)
def fake_word(self):
return self.faker_.word()
def fake_first_name(self):
return self.faker_.first_name()
def fake_last_name(self):
return self.faker_.last_name()
def fake_address(self):
return self.faker_.address()
def fake_sentence(self,n):
return self.faker_.sentence(nb_words=n)
def fake_text(self):
return self.faker_.text()
def fake_company(self):
return self.faker_.company()
def fake_city(self):
return self.faker_.city()
def reemplazo_fake(self,identificadores):
new_iden=[]
for id in identificadores:
if 'PER' in id:
new_iden.append(self.fake_first_name())
elif 'ORG' in id:
new_iden.append(self.fake_company())
elif 'LOC' in id:
new_iden.append(self.fake_city())
else:
new_iden.append(id)
return new_iden
def categorizar_texto(self,texto):
name="elozano/bert-base-cased-news-category"
tokenizer = AutoTokenizer.from_pretrained(name)
model_ = AutoModelForSequenceClassification.from_pretrained(name)
inputs_ = tokenizer(texto, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
logits = model_(**inputs_).logits
preds = torch.softmax(logits, dim=-1)
id2lang = model_.config.id2label
vals, idxs = torch.max(preds, dim=1)
#retorna el idioma con mayor porcentaje
maximo=vals.max()
cat=''
self.categoria_texto=''
porcentaje=0
for k, v in zip(idxs, vals):
if v.item()==maximo:
cat,porcentaje=id2lang[k.item()],v.item()
self.categoria_texto=cat
return cat, porcentaje
def predict(self,etiquetas):
categoria, porcentaje = self.categorizar_texto(self.texto)
print(categoria, porcentaje)
self.tokenizer = AutoTokenizer.from_pretrained(self.modelo_ner)
tokens = self.tokenizer.tokenize(self.texto)
ids = self.tokenizer.convert_tokens_to_ids(tokens)
input_ids = torch.tensor([ids])
with torch.no_grad():
logits = self.model(input_ids).logits
predicted_token_class_ids = logits.argmax(-1)
predicted_tokens_classes = [self.model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
labels = predicted_token_class_ids
loss = self.model(input_ids, labels=labels).loss
if (self.idioma=='es'):
out1 = self.salida_json(tokens,predicted_tokens_classes) #spanish solo palabras sensibles
if etiquetas:
out2 = self.salida_texto_anonimizado(ids,predicted_tokens_classes) #solo identificadores
else:
out2 = self.salida_texto_anonimizado(ids,self.reemplazo_fake(predicted_tokens_classes)) #español texto completo
else:
new_tokens,ig_tokens=self.reordenacion_tokens(tokens)
new_identificadores = self.reordenacion_identificadores(ig_tokens,predicted_tokens_classes)
out1 = self.salida_json(new_tokens,new_identificadores),
if etiquetas:
out2 = self.salida_texto(new_tokens,new_identificadores)#solo identificadores
else:
out2 = self.salida_texto(new_tokens,self.reemplazo_fake(new_identificadores))
return (
out1,
str(out2)
)
class ModeloDataset:
def __init__(self):
self.texto=""
self.idioma=""
self.modelo_ner=""
self.categoria_texto=""
self.tokenizer = AutoTokenizer.from_pretrained("BSC-LT/roberta_model_for_anonimization")
def reordenacion_tokens(self,tokens):
i=0
new_tokens=[]
ig_tokens=[] #ignorar estos indices del array de indentificadores
for token in tokens:
ind=len(new_tokens)
if i<len(tokens):
if token.startswith("▁"):
new_tokens.append(token)
i=i+1
else:
new_tokens[ind-1] = (new_tokens[ind-1] + token)
ig_tokens.append(i)
i=i+1
return (
new_tokens,
ig_tokens
)
def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes):
x=0
new_identificadores=[]
for token in predicted_tokens_classes:
if x not in ig_tokens:
new_identificadores.append(token)
x=x+1
else:
x=x+1
return new_identificadores
def aplicar_modelo(self,_sentences,idioma):
if idioma=="es":
self.tokenizer = AutoTokenizer.from_pretrained("BSC-LT/roberta_model_for_anonimization")
tokenized_text=[self.tokenizer.tokenize(sentence) for sentence in _sentences]
ids = [self.tokenizer.convert_tokens_to_ids(x) for x in tokenized_text]
MAX_LEN=128
ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
input_ids = torch.tensor(ids)
#model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
self.model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
with torch.no_grad():
logits = self.model(input_ids).logits
predicted_token_class_ids = logits.argmax(-1)
i=0
_predicted_tokens_classes=[]
for a in predicted_token_class_ids:
#_predicted_tokens_classes[i]=[model.config.id2label[t.item()] for t in predicted_token_class_ids[i]]
_predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
i=i+1
labels = predicted_token_class_ids
loss = self.model(input_ids, labels=labels).loss
else:
print('idioma:',idioma)
self.tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
tokenized_text=[self.tokenizer.tokenize(sentence) for sentence in _sentences]
ids = [self.tokenizer.convert_tokens_to_ids(x) for x in tokenized_text]
MAX_LEN=128
ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
input_ids = torch.tensor(ids)
self.model = AutoModelForTokenClassification.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
with torch.no_grad():
logits = self.model(input_ids).logits
predicted_token_class_ids = logits.argmax(-1)
i=0
_predicted_tokens_classes=[]
for a in predicted_token_class_ids:
#_predicted_tokens_classes[i]=[model.config.id2label[t.item()] for t in predicted_token_class_ids[i]]
_predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
i=i+1
labels = predicted_token_class_ids
loss = self.model(input_ids, labels=labels).loss
new_tokens=[]
ig_tok=[]
i=0
new_identificadores=[]
for item in tokenized_text:
print('len(tokens)',len(item))
aux1, aux2= self.reordenacion_tokens(item)
new_tokens.append(aux1)
ig_tok.append(aux2)
print('new_tokens',new_tokens)
print('ig_tok',ig_tok)
for items in _predicted_tokens_classes:
if i<len(tokenized_text[i]):
print('len(_predicted_tokens_classes)',len(items))
aux=self.reordenacion_identificadores(ig_tok[i],items)
new_identificadores.append(aux)
i=i+1
print('new_identificadores',new_identificadores)
#return new_identificadores, new_tokens
return ids, _predicted_tokens_classes
def salida_texto( self,ids,pre_tokens):
new_labels = []
current_word = None
i=0
for identificador in pre_tokens:
if (self.tokenizer.decode(ids[i])!="<s>"):
if identificador=='O':
new_labels.append(self.tokenizer.decode(ids[i]))
else:
new_labels.append(' ' + identificador)
i=i+1
return new_labels
def salida_texto2(self, ids,pre_tokens):
i=0
out=[]
for iden in pre_tokens:
if i<len(ids):
out.append(self.salida_texto( ids[i],np.array(pre_tokens[i])) )
i=i+1
return out
def unir_array(self,_out):
i=0
salida=[]
for item in _out:
salida.append(" ".join(str(x) for x in _out[i]))
i=i+1
return salida
def unir_columna_valores(self,df,columna):
out = ','.join(df[columna])
return out
class utilJSON:
def __init__(self,archivo):
with open(archivo, encoding='utf-8') as f:
self.data = json.load(f)
def obtener_keys_json(self,data):
out=[]
for key in data:
out.append(key)
return(out)
###
### funcion "flatten_json" tomada de https://levelup.gitconnected.com/a-deep-dive-into-nested-json-to-data-frame-with-python-69bdabb41938
### Renu Khandelwal Jul 23, 2023
def flatten_json(self,y):
try:
out = {}
def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x
flatten(y)
return out
except json.JSONDecodeError:
print("Error: The JSON document could not be decoded.")
except TypeError:
print("Error: Invalid operation or function argument type.")
except KeyError:
print("Error: One or more keys do not exist.")
except ValueError:
print("Error: Invalid value detected.")
except Exception as e:
# Catch any other exceptions
print(f"An unexpected error occurred: {str(e)}")
def obtener_dataframe(self,data):
claves=self.obtener_keys_json(data)
print(claves)
if len(claves)==1:
#Flatten nested dictionaries and lists
data_flattened = [self.flatten_json(class_info) for class_info in data[claves[0]]]
# Create DataFrame from flattened JSON
df = pd.DataFrame(data_flattened)
else:
#df = pd.json_normalize(data)
data_flattened = [self.flatten_json(class_info) for class_info in data]
df = pd.DataFrame(data_flattened)
return df
modelo = ModeloDataset()
model = Model()
def get_model():
return model
def procesar(texto,archivo, etiquetas):
if len(texto)>0:
print('text')
model.identificacion_idioma(texto)
return model.predict(etiquetas),gr.Dataframe(),gr.File()
else:
if archivo.name.split(".")[1]=="csv":
print('csv')
df=pd.read_csv(archivo.name,delimiter=",")
df_new = pd.DataFrame( columns=df.columns.values)
for item in df.columns.values:
sentences=df[item]
model.identificacion_idioma(sentences[0])
#print('sentences',sentences)
ides, predicted = modelo.aplicar_modelo(sentences,model.idioma)
out=modelo.salida_texto2( ides,predicted)
print('out:',out)
df_new[item] = modelo.unir_array(out)
return "", df_new, df_new.to_csv(sep='\t', encoding='utf-8',index=False)
#return "", df_new, df_new.to_excel( index=False)
else:
print('json')
if archivo.name.split(".")[1]=="json":
util = utilJSON(archivo.name)
df=util.obtener_dataframe(util.data)
df_new = pd.DataFrame( columns=df.columns.values)
for item in df.columns.values:
sentences=df[item]
print('item antes de aplicar modelo',item)
ides, predicted = modelo.aplicar_modelo(sentences,"en")
print('despues de aplicar modelo')
out=modelo.salida_texto2( ides,predicted)
df_new[item] = modelo.unir_array(out)
#return "", df, df.to_csv(sep='\t', encoding='utf-8',index=False)
return "", df_new, df_new.to_csv(sep='\t', encoding='utf-8',index=False)
demo = gr.Interface(fn=procesar,inputs=["text",gr.File(), "checkbox"] , outputs=["text",gr.Dataframe(interactive=False),"text"])
#
demo.launch(share=True)
|