Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,945 Bytes
d8b0170 26a5d91 d8b0170 3b71b43 20b52c9 2450720 d8b0170 9e1dbe1 e9b19af 32f0bb8 364a3b9 a6d47ca cea3aed 2adaaee a6d47ca de575f0 51bce82 f8d4d9e d4cc1fc f8d4d9e 42081fd a61f315 7f33d1b ea6676d e313b15 42081fd 8690539 d8b0170 3b55fd0 d8b0170 2c86017 d8b0170 2396c5a d8b0170 a6d47ca d95eaa8 d8b0170 4d779d6 d8b0170 805e3cb 992f631 765b409 d702211 17657a0 f6ffc29 77d9a6b a4ef9f1 d1f1c51 a44a0f8 8242afe d95eaa8 2450720 80b899c 6734f7c 56c5b38 d8b0170 dc84d2e 5d26056 ebd18a0 7ac18af f6ffc29 5e3ac30 7a5454a d261fd7 475c64a cea3aed 14aac3b 7a5454a 2f1c53d 1271363 792663f 1271363 792663f 1271363 703c5e6 bafcb42 7dcec86 a8c814c d8089c3 a44a0f8 703c5e6 a4ef9f1 703c5e6 96802ce a8b99a6 792663f 4731e15 6734f7c ebd18a0 792663f 7b84187 80b899c 295b314 a6d47ca 08cb21d 2f1c53d 7a76d42 cc298b6 e6ca355 b94939a e6ca355 51bce82 92b1582 cc298b6 890401f c8845fb 9956685 127e10f f34d30a 20b52c9 d8b0170 2f1c53d d8b0170 966b4a8 d8b0170 2ad75ef 11dc7fe 036bef7 d8b0170 4e32b83 d8b0170 966b4a8 e6ca355 714a31a e6ca355 80b899c 96802ce dc84d2e 295b314 a4ef9f1 4e06c96 e6ca355 6499acd 9eddcb4 51bce82 9eddcb4 ad97103 9eddcb4 ad97103 9eddcb4 a6d47ca 9eddcb4 714a31a 9eddcb4 e6ca355 9eddcb4 8cd08a4 eae1771 d8b0170 f9449cf d8b0170 cff2130 6311068 d8b0170 758ffa0 8e1fc92 d8b0170 51bce82 d8b0170 a6920aa e74e0f4 ad97103 a6920aa ad97103 a6920aa a6d47ca a6920aa 3f0ff20 e6ca355 a61f315 a6920aa e6ca355 4e32b83 036bef7 a6920aa e9b19af a6920aa eae1771 a6920aa f9449cf a6920aa cff2130 6311068 a6920aa eae1771 a6920aa 51bce82 a6920aa 4147862 e74e0f4 ad97103 4147862 ad97103 4147862 a6d47ca 4147862 8c0b627 e6ca355 a61f315 4147862 e6ca355 eae1771 4147862 eae1771 4147862 d8b0170 8a296d6 06b376e e364109 06b376e 8a296d6 3c35dc3 8a296d6 3c35dc3 d8b0170 9eddcb4 d8b0170 21ba788 d8b0170 2ad75ef d8b0170 172acd9 d8b0170 172acd9 d8b0170 6cca08f d8b0170 6524df3 d8b0170 992f3e7 d8b0170 172acd9 d8b0170 9eddcb4 e0b3ce3 d8b0170 e0b3ce3 eae1771 d8b0170 eae1771 a6920aa eae1771 a6920aa e0b3ce3 eae1771 a6920aa d8b0170 992f631 d8b0170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers import EulerAncestralDiscreteScheduler
from diffusers import DPMSolverMultistepScheduler
from typing import Tuple
import paramiko
import gc
import time
import datetime
#from diffusers.schedulers import AysSchedules
from gradio import themes
from hidiffusion import apply_hidiffusion, remove_hidiffusion
import gc
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
#torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = "GoogleBez12!"
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
DESCRIPTIONXX = """
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester A) ⚡⚡⚡⚡
"""
examples = [
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw",
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]
MODEL_OPTIONS = {
"REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
}
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = 0
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
#sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
def load_and_prepare_model(model_id):
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None,use_safetensors=False)
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
#vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
#vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
pipe = StableDiffusionXLPipeline.from_pretrained(
'ford442/RealVisXL_V5.0_BF16',
#'ford442/Juggernaut-XI-v11-fp32',
# 'SG161222/RealVisXL_V5.0',
#torch_dtype=torch.bfloat16,
add_watermarker=False,
# custom_pipeline="lpw_stable_diffusion_xl",
#use_safetensors=True,
# use_auth_token=HF_TOKEN,
# vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
# vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
# vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
#vae=vae,
#unet=pipeX.unet,
#scheduler = sched,
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
)
#pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16) # ,use_safetensors=True FAILS
#pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
#pipe.vae = AutoencoderKL.from_pretrained('stabilityai/sdxl-vae-bf16',subfolder='vae')
#pipe.vae = AutoencoderKL.from_pretrained('stabilityai/sdxl-vae',subfolder='vae',force_upcast=False,scaling_factor= 0.182158767676)
#pipe.vae.to(torch.bfloat16)
'''
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
'''
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
pipe.vae = vaeX.to(torch.bfloat16)
#pipe.unet = unetX
#pipe.vae.do_resize=False
#pipe.vae.do_rescale=False
#pipe.vae.do_convert_rgb=True
pipe.vae.vae_scale_factor=8
pipe.scheduler = sched
#pipe.vae=vae.to(torch.bfloat16)
#pipe.unet=pipeX.unet
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
pipe.to(device=device, dtype=torch.bfloat16)
#pipe.to(torch.bfloat16)
#apply_hidiffusion(pipe)
#pipe.unet.set_default_attn_processor()
pipe.vae.set_default_attn_processor()
print(f'Pipeline: ')
#print(f'_optional_components: {pipe._optional_components}')
#print(f'watermark: {pipe.watermark}')
print(f'image_processor: {pipe.image_processor}')
#print(f'feature_extractor: {pipe.feature_extractor}')
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
#print(f'UNET: {pipe.unet}')
pipe.watermark=None
pipe.safety_checker=None
#pipe.to(torch.device("cuda:0"))
#pipe.vae.to(torch.bfloat16)
#pipe.to(device, torch.bfloat16)
#del pipeX
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
#sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
#sched = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe
# Preload and compile both models
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
MAX_SEED = np.iinfo(np.int32).max
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name,optimize=False,compress_level=0)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def uploadNote():
# write note txt
filename= f'tst_A_{seed}.txt'
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
with open(filename, "w") as f:
f.write(f"Realvis 5.0 (Tester A): {seed} png\n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
f.write(f"SPACE SETUP: \n")
f.write(f"Use Model Dtype: no \n")
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
f.write(f"Model HiDiffusion OFF \n")
f.write(f"Model do_resize ON \n")
f.write(f"added torch to prereq and changed accellerate \n")
upload_to_ftp(filename)
@spaces.GPU(duration=30)
def generate_30(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
seed: int = 1,
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
torch.cuda.empty_cache()
gc.collect()
global models
pipe = models[model_choice]
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device='cuda').manual_seed(seed)
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
# "timesteps": sampling_schedule,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
pipe.scheduler.set_timesteps(num_inference_steps,device)
uploadNote()
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
images.extend(pipe(**batch_options).images)
sd_image_path = f"rv50_A_{seed}.png"
images[0].save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
image_paths = [save_image(img) for img in images]
torch.cuda.empty_cache()
gc.collect()
return image_paths, seed
@spaces.GPU(duration=60)
def generate_60(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
seed: int = 1,
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 250,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
torch.cuda.empty_cache()
gc.collect()
global models
pipe = models[model_choice]
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device='cuda').manual_seed(seed)
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
# "timesteps": sampling_schedule,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
pipe.scheduler.set_timesteps(num_inference_steps,device)
uploadNote()
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
images.extend(pipe(**batch_options).images)
sd_image_path = f"rv50_A_{seed}.png"
images[0].save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
image_paths = [save_image(img) for img in images]
torch.cuda.empty_cache()
gc.collect()
return image_paths, seed
@spaces.GPU(duration=90)
def generate_90(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
seed: int = 1,
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 250,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
torch.cuda.empty_cache()
gc.collect()
global models
pipe = models[model_choice]
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device='cuda').manual_seed(seed)
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
# "timesteps": sampling_schedule,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
pipe.scheduler.set_timesteps(num_inference_steps,device)
uploadNote()
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
images.extend(pipe(**batch_options).images)
sd_image_path = f"rv50_A_{seed}.png"
images[0].save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
image_paths = [save_image(img) for img in images]
torch.cuda.empty_cache()
gc.collect()
return image_paths, seed
def load_predefined_images1():
predefined_images1 = [
"assets/7.png",
"assets/8.png",
"assets/9.png",
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
]
return predefined_images1
css = '''
#col-container {
margin: 0 auto;
max-width: 640px;
}
h1{text-align:center}
footer {
visibility: hidden
}
body {
background-color: green;
}
'''
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Row():
model_choice = gr.Dropdown(
label="Model Selection🔻",
choices=list(MODEL_OPTIONS.keys()),
value="REALVISXL V5.0 BF16"
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
num_images = gr.Slider(
label="Number of Images",
minimum=1,
maximum=5,
step=1,
value=1,
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30,
step=0.1,
value=4,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=1000,
step=10,
value=150,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
run_button_30.click,
],
# api_name="generate", # Add this line
fn=generate_30,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_60.click,
],
# api_name="generate", # Add this line
fn=generate_60,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_90.click,
],
# api_name="generate", # Add this line
fn=generate_90,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images,
],
outputs=[result, seed],
)
gr.Markdown("### REALVISXL V5.0")
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
#gr.Markdown("### LIGHTNING V5.0")
#predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())
gr.Markdown(
"""
<div style="text-align: justify;">
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
</div>
""")
def text_generation(input_text, seed):
full_prompt = "Text Generator Application by ecarbo"
return full_prompt
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"
if __name__ == "__main__":
demo_interface = demo.queue(max_size=50) # Remove .launch() here
text_gen_interface = gr.Interface(
fn=text_generation,
inputs=[
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
gr.Number(value=10, label="Enter seed number")
],
outputs=gr.Textbox(label="Text Generated"),
title=title,
description=description,
)
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
combined_interface.launch(show_api=False) |