File size: 26,945 Bytes
d8b0170
 
 
 
 
 
26a5d91
d8b0170
 
 
 
 
 
 
 
3b71b43
20b52c9
2450720
 
d8b0170
9e1dbe1
e9b19af
32f0bb8
364a3b9
a6d47ca
cea3aed
2adaaee
a6d47ca
de575f0
51bce82
 
f8d4d9e
 
d4cc1fc
f8d4d9e
42081fd
a61f315
7f33d1b
ea6676d
e313b15
 
42081fd
8690539
 
 
 
 
d8b0170
3b55fd0
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
2c86017
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2396c5a
d8b0170
a6d47ca
d95eaa8
d8b0170
 
 
 
 
 
 
 
4d779d6
d8b0170
805e3cb
992f631
765b409
d702211
17657a0
f6ffc29
77d9a6b
a4ef9f1
d1f1c51
a44a0f8
8242afe
d95eaa8
2450720
80b899c
 
6734f7c
56c5b38
d8b0170
dc84d2e
 
 
5d26056
ebd18a0
7ac18af
f6ffc29
5e3ac30
7a5454a
d261fd7
475c64a
cea3aed
 
 
14aac3b
7a5454a
 
2f1c53d
1271363
792663f
1271363
 
 
792663f
1271363
 
 
703c5e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafcb42
7dcec86
a8c814c
d8089c3
a44a0f8
703c5e6
a4ef9f1
703c5e6
 
96802ce
a8b99a6
792663f
4731e15
6734f7c
ebd18a0
792663f
7b84187
80b899c
 
295b314
a6d47ca
08cb21d
2f1c53d
7a76d42
cc298b6
e6ca355
 
b94939a
e6ca355
51bce82
92b1582
cc298b6
 
890401f
 
c8845fb
9956685
127e10f
f34d30a
20b52c9
d8b0170
2f1c53d
d8b0170
 
 
966b4a8
d8b0170
2ad75ef
11dc7fe
036bef7
 
 
 
 
 
 
 
 
 
 
 
 
d8b0170
 
4e32b83
d8b0170
 
 
 
 
 
966b4a8
e6ca355
714a31a
 
 
e6ca355
 
 
 
 
 
 
 
80b899c
96802ce
dc84d2e
295b314
a4ef9f1
4e06c96
e6ca355
 
6499acd
9eddcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51bce82
 
9eddcb4
 
 
 
ad97103
9eddcb4
 
ad97103
 
9eddcb4
 
 
 
 
a6d47ca
9eddcb4
 
 
 
 
 
714a31a
9eddcb4
 
 
 
 
 
e6ca355
9eddcb4
 
 
 
 
 
 
8cd08a4
eae1771
d8b0170
 
 
 
f9449cf
d8b0170
 
 
cff2130
6311068
d8b0170
 
758ffa0
8e1fc92
d8b0170
51bce82
 
d8b0170
 
a6920aa
e74e0f4
ad97103
a6920aa
 
ad97103
 
a6920aa
 
 
 
 
a6d47ca
a6920aa
 
 
 
 
3f0ff20
e6ca355
a61f315
a6920aa
 
 
 
 
e6ca355
4e32b83
036bef7
a6920aa
e9b19af
 
a6920aa
 
eae1771
 
a6920aa
 
 
 
f9449cf
a6920aa
 
 
cff2130
6311068
a6920aa
 
 
eae1771
a6920aa
51bce82
 
a6920aa
 
4147862
e74e0f4
ad97103
4147862
 
ad97103
 
4147862
 
 
 
 
a6d47ca
4147862
 
 
 
 
8c0b627
e6ca355
a61f315
4147862
 
 
 
 
e6ca355
eae1771
 
4147862
eae1771
 
4147862
 
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
8a296d6
06b376e
 
e364109
06b376e
8a296d6
 
 
 
 
3c35dc3
8a296d6
 
 
3c35dc3
d8b0170
 
 
 
 
 
 
 
 
9eddcb4
 
 
d8b0170
 
 
 
 
 
21ba788
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad75ef
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172acd9
d8b0170
 
 
 
 
 
172acd9
d8b0170
 
 
 
 
6cca08f
d8b0170
6524df3
d8b0170
 
 
 
992f3e7
d8b0170
172acd9
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eddcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b3ce3
 
 
d8b0170
e0b3ce3
eae1771
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae1771
a6920aa
 
eae1771
a6920aa
e0b3ce3
eae1771
a6920aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992f631
 
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces

import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers import EulerAncestralDiscreteScheduler
from diffusers import DPMSolverMultistepScheduler

from typing import Tuple
import paramiko
import gc
import time
import datetime
#from diffusers.schedulers import AysSchedules

from gradio import themes
from hidiffusion import apply_hidiffusion, remove_hidiffusion

import gc

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
#torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"

torch.set_float32_matmul_precision("highest")

FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = "GoogleBez12!"
FTP_DIR = "1ink.us/stable_diff/"  # Remote directory on FTP server

DESCRIPTIONXX = """
    ## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester A) ⚡⚡⚡⚡
"""

examples = [

    "Many apples splashed with drops of water within a fancy bowl 4k, hdr  --v 6.0 --style raw",
    "A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]

MODEL_OPTIONS = {
    "REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
}

MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = 0
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")

#sampling_schedule = AysSchedules["StableDiffusionXLTimesteps"]

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

def load_and_prepare_model(model_id):
    model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
    dtype = model_dtypes.get(model_id, torch.bfloat16)  # Default to float32 if not found
    #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
    vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None,use_safetensors=False)
    #vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
    #vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
    #vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
    #vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae')   #  ,use_safetensors=True  FAILS
    #vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16)   #  ,use_safetensors=True  FAILS
    #unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16)   #  ,use_safetensors=True  FAILS
  #  vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
    #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
    #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
    sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
    #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
    #pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
    #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
    pipe = StableDiffusionXLPipeline.from_pretrained(
        'ford442/RealVisXL_V5.0_BF16',
       #'ford442/Juggernaut-XI-v11-fp32',
      #   'SG161222/RealVisXL_V5.0',
        #torch_dtype=torch.bfloat16,
        add_watermarker=False,
       # custom_pipeline="lpw_stable_diffusion_xl",
        #use_safetensors=True,
      #  use_auth_token=HF_TOKEN,
     #  vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
     #   vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
       # vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
        #vae=vae,
        #unet=pipeX.unet,
        #scheduler = sched,
      #  scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
        #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
    )
    #pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16)   #  ,use_safetensors=True  FAILS
            
    #pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae')   #  ,use_safetensors=True  FAILS
    
    #pipe.vae = AutoencoderKL.from_pretrained('stabilityai/sdxl-vae-bf16',subfolder='vae')  
    #pipe.vae = AutoencoderKL.from_pretrained('stabilityai/sdxl-vae',subfolder='vae',force_upcast=False,scaling_factor= 0.182158767676)  
    #pipe.vae.to(torch.bfloat16)


    
    '''
    scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without loosing too much precision in which case
            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
        
    '''
    
    #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
    #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
    #pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
    pipe.vae = vaeX.to(torch.bfloat16)
    #pipe.unet = unetX
    
    #pipe.vae.do_resize=False
    #pipe.vae.do_rescale=False
    #pipe.vae.do_convert_rgb=True
    pipe.vae.vae_scale_factor=8

    pipe.scheduler = sched
    #pipe.vae=vae.to(torch.bfloat16)
    #pipe.unet=pipeX.unet
    #pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
    #pipe.scheduler=EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")

    pipe.to(device=device, dtype=torch.bfloat16)
    #pipe.to(torch.bfloat16)
    #apply_hidiffusion(pipe)

    #pipe.unet.set_default_attn_processor()
    pipe.vae.set_default_attn_processor()
    
    print(f'Pipeline: ')
    #print(f'_optional_components: {pipe._optional_components}')
    #print(f'watermark: {pipe.watermark}')
    print(f'image_processor: {pipe.image_processor}')
    #print(f'feature_extractor: {pipe.feature_extractor}')
    print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
    #print(f'UNET: {pipe.unet}')
    pipe.watermark=None
    pipe.safety_checker=None  
    #pipe.to(torch.device("cuda:0"))
    #pipe.vae.to(torch.bfloat16)
    #pipe.to(device, torch.bfloat16)
    #del pipeX
    #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
    #sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
    #sched = DDIMScheduler.from_config(pipe.scheduler.config)
    return pipe
    
# Preload and compile both models
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}

MAX_SEED = np.iinfo(np.int32).max

neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")
        
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name,optimize=False,compress_level=0)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def uploadNote():
      # write note txt
    filename= f'tst_A_{seed}.txt'
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    with open(filename, "w") as f:
        f.write(f"Realvis 5.0 (Tester A): {seed} png\n")
        f.write(f"Date/time: {timestamp} \n")
        f.write(f"Prompt: {prompt} \n")
        f.write(f"Steps: {num_inference_steps} \n")
        f.write(f"Guidance Scale: {guidance_scale} \n")
        f.write(f"SPACE SETUP: \n")
        f.write(f"Use Model Dtype: no \n")
        f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
        f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
        f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
        f.write(f"Model HiDiffusion OFF \n")
        f.write(f"Model do_resize ON \n")
        f.write(f"added torch to prereq and changed accellerate  \n")
    upload_to_ftp(filename) 
    
@spaces.GPU(duration=30)
def generate_30(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    seed: int = 1,
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, 
    num_images: int = 1,  
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    torch.cuda.empty_cache()
    gc.collect()
    global models
    pipe = models[model_choice]
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device='cuda').manual_seed(seed)
    #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt],
        "negative_prompt_2": [neg_prompt_2],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
     #   "timesteps": sampling_schedule,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    pipe.scheduler.set_timesteps(num_inference_steps,device)
    uploadNote()
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)
    sd_image_path = f"rv50_A_{seed}.png"
    images[0].save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    image_paths = [save_image(img) for img in images]
    torch.cuda.empty_cache()
    gc.collect()
    return image_paths, seed

@spaces.GPU(duration=60)
def generate_60(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    seed: int = 1,
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 250,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, 
    num_images: int = 1,
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    torch.cuda.empty_cache()
    gc.collect()
    global models
    pipe = models[model_choice]
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device='cuda').manual_seed(seed)
    #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt],
        "negative_prompt_2": [neg_prompt_2],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
     #   "timesteps": sampling_schedule,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    pipe.scheduler.set_timesteps(num_inference_steps,device)
    uploadNote()
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)
    sd_image_path = f"rv50_A_{seed}.png"
    images[0].save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    image_paths = [save_image(img) for img in images]
    torch.cuda.empty_cache()
    gc.collect()
    return image_paths, seed

@spaces.GPU(duration=90)
def generate_90(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    seed: int = 1,
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 250,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, 
    num_images: int = 1,  
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    torch.cuda.empty_cache()
    gc.collect()
    global models
    pipe = models[model_choice]
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device='cuda').manual_seed(seed)
    #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt],
        "negative_prompt_2": [neg_prompt_2],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
     #   "timesteps": sampling_schedule,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    pipe.scheduler.set_timesteps(num_inference_steps,device)
    uploadNote()
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)
    sd_image_path = f"rv50_A_{seed}.png"
    images[0].save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    image_paths = [save_image(img) for img in images]
    torch.cuda.empty_cache()
    gc.collect()
    return image_paths, seed

def load_predefined_images1():
    predefined_images1 = [
        "assets/7.png",
        "assets/8.png",
        "assets/9.png",
        "assets/1.png",
        "assets/2.png",
        "assets/3.png",
        "assets/4.png",
        "assets/5.png",
        "assets/6.png",
    ]
    return predefined_images1

css = '''
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
h1{text-align:center}
footer {
    visibility: hidden
}
body {
  background-color: green;
}
'''

with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
    gr.Markdown(DESCRIPTIONXX)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button_30 = gr.Button("Run 30 Seconds", scale=0)
        run_button_60 = gr.Button("Run 60 Seconds", scale=0)
        run_button_90 = gr.Button("Run 90 Seconds", scale=0)
    result = gr.Gallery(label="Result", columns=1, show_label=False) 

    with gr.Row():
        model_choice = gr.Dropdown(
            label="Model Selection🔻",
            choices=list(MODEL_OPTIONS.keys()),
            value="REALVISXL V5.0 BF16"
        )

        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Quality Style",
        )
        num_images = gr.Slider(
            label="Number of Images",
            minimum=1,
            maximum=5,
            step=1,
            value=1,
        )
        with gr.Row():
            with gr.Column(scale=1):
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=5,
                    lines=4,
                    placeholder="Enter a negative prompt",
                    value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner',  'distorted face','amateur'",
                    visible=True,
                )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
            height = gr.Slider(
                label="Height",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=30,
                step=0.1,
                value=4,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=10,
                maximum=1000,
                step=10,
                value=150,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    
    gr.on(
        triggers=[
            run_button_30.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_30,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed, 
            num_images, 
        ],
        outputs=[result, seed],
    )
    
    gr.on(
        triggers=[
            run_button_60.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_60,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed, 
            num_images, 
        ],
        outputs=[result, seed],
    )
    
    gr.on(
        triggers=[
            run_button_90.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_90,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed, 
            num_images, 
        ],
        outputs=[result, seed],
    )

    gr.Markdown("### REALVISXL V5.0")
    predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())

    #gr.Markdown("### LIGHTNING V5.0")
    #predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images. 
    <a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
    </div>
    """) 

def text_generation(input_text, seed):
    full_prompt = "Text Generator Application by ecarbo"
    return full_prompt
    
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"

if __name__ == "__main__":
    demo_interface = demo.queue(max_size=50)  # Remove .launch() here

    text_gen_interface = gr.Interface(
        fn=text_generation,
        inputs=[
            gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
            gr.Number(value=10, label="Enter seed number")
        ],
        outputs=gr.Textbox(label="Text Generated"),
        title=title,
        description=description,
    )

    combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
    combined_interface.launch(show_api=False)