Spaces:
Sleeping
Sleeping
File size: 20,706 Bytes
0715d07 086d60c 0715d07 4fe5a18 0715d07 4fe5a18 0715d07 6633793 0715d07 4fe5a18 0715d07 9e63716 0715d07 6633793 0715d07 4f58797 0715d07 bb4144d 6633793 0715d07 4fe5a18 bb4144d 0715d07 d71688b a021dd0 0715d07 4fe5a18 0715d07 4fe5a18 ac86bd6 0715d07 9e63716 0715d07 9e63716 4d5132e 9e63716 4d5132e 3d84520 4d5132e 9e63716 8dacfca 4d5132e 8dacfca e6196e1 8dacfca 0715d07 9e63716 0715d07 9e63716 0715d07 beb281e 464b223 6633793 a408f8a 4fe5a18 a408f8a 9e63716 a408f8a 6633793 a408f8a dda42c1 356147c 76ed2cd 356147c c4cc94f 76ed2cd dda42c1 cba7f50 356147c 6f1e876 4fe5a18 6f1e876 d71688b 476450d d71688b 6f1e876 4fe5a18 6f1e876 a7e01a6 dc19c13 2959130 beb281e dc19c13 a7e01a6 7287dc0 dc19c13 a7e01a6 3cd711b a7e01a6 4fe5a18 3cd711b a7e01a6 3cd711b 389be27 4f58797 389be27 4fe5a18 a7e01a6 8f4b0f4 dc19c13 2959130 beb281e dc19c13 afa872b dc19c13 a7e01a6 8f4b0f4 dc19c13 a7e01a6 3cd711b a7e01a6 4fe5a18 3cd711b a7e01a6 3cd711b 6f1e876 1735cb3 25bf21a 1735cb3 76ed2cd 3d84520 1735cb3 6f1e876 b9941e4 a6e721c 76d1bc6 25bf21a 8f8acfe 6f1e876 a9087d6 4fe5a18 76ed2cd beb281e 76ed2cd befc23c 76ed2cd 6f1e876 beb281e 76ed2cd 6caf72c 6f1e876 beb281e 76ed2cd 2f2e08d beb281e 4fe5a18 beb281e 4fe5a18 df8df97 d7d9984 4fe5a18 d7d9984 df8df97 8f8acfe df8df97 d7d9984 8f8acfe d7d9984 8f8acfe d7d9984 df8df97 8f8acfe d7d9984 df8df97 beb281e 0715d07 4fe5a18 ac86bd6 beb281e 7ca333b ccd3720 3ecaa84 beb281e a7e01a6 fd21c0a 7ca333b ebc77f2 fd21c0a 91d86cf 0040a1b 9e63716 fd21c0a 2f2e08d 6f1e876 4fe5a18 2f2e08d 9e63716 4fe5a18 fd21c0a 7ca333b fd21c0a a9d4519 df8df97 f09ba10 91d86cf fb5e509 9e63716 4c13399 f97dfd6 91d86cf 4fe5a18 2f2e08d f97dfd6 320fde3 ccd3720 4944be6 4fe5a18 9e63716 df8df97 db83ceb 73dfd2e beb281e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
import gradio as gr
import torch
import json
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, RobertaForTokenClassification
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from json import JSONEncoder
from faker import Faker
from keras.utils import pad_sequences
class out_json():
def __init__(self, w,l):
self.word = w
self.label = l
class MyEncoder(JSONEncoder):
def default(self, o):
return o.__dict__
class Model:
def __init__(self):
self.texto=""
self.idioma=""
self.modelo_ner=""
self.categoria_texto=""
##
### Función que aplica el modelo e identifica su idioma
###
def identificacion_idioma(self,text):
self.texto=text
tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
preds = torch.softmax(logits, dim=-1)
id2lang = model.config.id2label
vals, idxs = torch.max(preds, dim=1)
#retorna el idioma con mayor porcentaje
maximo=vals.max()
idioma=''
porcentaje=0
for k, v in zip(idxs, vals):
if v.item()==maximo:
idioma,porcentaje=id2lang[k.item()],v.item()
if idioma=='es':
self.idioma="es"
self.modelo_ner='BSC-LT/roberta_model_for_anonimization'
self.faker_ = Faker('es_MX')
self.model = RobertaForTokenClassification.from_pretrained(self.modelo_ner)
else:
self.idioma="en"
self.faker_ = Faker('en_US')
self.modelo_ner="FacebookAI/xlm-roberta-large-finetuned-conll03-english"
self.model = AutoModelForTokenClassification.from_pretrained(self.modelo_ner)
self.categorizar_texto(self.texto)
def reordenacion_tokens(self,tokens,caracter):
i=0
new_tokens=[]
ig_tokens=[]
for token in tokens:
print('token_texto:',token,caracter)
ind=len(new_tokens)
if i<len(tokens):
if token.startswith(caracter):
new_tokens.append(token)
i=i+1
else:
new_tokens[ind-1] = (new_tokens[ind-1] + token)
ig_tokens.append(i)
i=i+1
return (
new_tokens,
ig_tokens
)
def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes):
x=0
new_identificadores=[]
for token in predicted_tokens_classes:
if x not in ig_tokens:
new_identificadores.append(token)
x=x+1
else:
x=x+1
return new_identificadores
def salida_json(self,tokens,pre_tokens):
list=[]
i=0
for t in tokens:
if pre_tokens[i]!='O':
a = out_json(t.replace('▁','').replace('Ġ','').replace('Ċ',''),pre_tokens[i].replace('▁',''))
list.append(a)
i=i+1
return MyEncoder().encode(list)
def salida_texto( self,tokens,pre_tokens):
new_labels = []
current_word = None
i=0
for token in tokens:
if pre_tokens[i]=='O' or 'MISC' in pre_tokens[i]:
new_labels.append(' ' +token.replace('▁','').replace('Ġ',''))
else:
new_labels.append(' ' + pre_tokens[i])
i=i+1
a=''
for i in new_labels:
a = a+i
return a
def salida_texto_anonimizado(self, ids,pre_tokens):
new_labels = []
current_word = None
i=0
for identificador in pre_tokens:
if identificador=='O' or 'OTH' in identificador:
new_labels.append(self.tokenizer.decode(ids[i]))
else:
new_labels.append(' ' + identificador)
i=i+1
a=''
for i in new_labels:
a = a+i
return a
def formato_salida(self,out):
a=""
for i in out:
a = a + i.replace('▁','').replace(' ','') + ' '
return a
def fake_pers(self):
return self.faker_.name(self)
def fake_word(self):
return self.faker_.word()
def fake_first_name(self):
return self.faker_.first_name()
def fake_last_name(self):
return self.faker_.last_name()
def fake_address(self):
return self.faker_.address()
def fake_sentence(self,n):
return self.faker_.sentence(nb_words=n)
def fake_text(self):
return self.faker_.text()
def fake_company(self):
return self.faker_.company()
def fake_city(self):
return self.faker_.city()
def reemplazo_fake(self,identificadores):
new_iden=[]
for id in identificadores:
if 'PER' in id:
new_iden.append(self.fake_first_name())
elif 'ORG' in id:
new_iden.append(self.fake_company())
elif 'LOC' in id:
new_iden.append(self.fake_city())
else:
new_iden.append(id)
return new_iden
###
### Función que aplica los modelo para categorizar el texto segun su contexto
###
def categorizar_texto(self,texto):
name="elozano/bert-base-cased-news-category"
tokenizer = AutoTokenizer.from_pretrained(name)
model_ = AutoModelForSequenceClassification.from_pretrained(name)
inputs_ = tokenizer(texto, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
logits = model_(**inputs_).logits
preds = torch.softmax(logits, dim=-1)
id2lang = model_.config.id2label
vals, idxs = torch.max(preds, dim=1)
#retorna el idioma con mayor porcentaje
maximo=vals.max()
cat=''
self.categoria_texto=''
porcentaje=0
for k, v in zip(idxs, vals):
if v.item()==maximo:
cat,porcentaje=id2lang[k.item()],v.item()
self.categoria_texto=cat
return cat, porcentaje
###
### Función que aplica los modelos sobre un texto
###
def predict(self,etiquetas):
categoria, porcentaje = self.categorizar_texto(self.texto)
print(categoria, porcentaje)
self.tokenizer = AutoTokenizer.from_pretrained(self.modelo_ner)
tokens = self.tokenizer.tokenize(self.texto)
ids = self.tokenizer.convert_tokens_to_ids(tokens)
input_ids = torch.tensor([ids])
with torch.no_grad():
logits = self.model(input_ids).logits
predicted_token_class_ids = logits.argmax(-1)
predicted_tokens_classes = [self.model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
labels = predicted_token_class_ids
loss = self.model(input_ids, labels=labels).loss
if (self.idioma=='es'):
new_tokens,ig_tokens=self.reordenacion_tokens(tokens,'Ġ')
else:
new_tokens,ig_tokens=self.reordenacion_tokens(tokens,'▁')
new_identificadores = self.reordenacion_identificadores(ig_tokens,predicted_tokens_classes)
out1 = self.salida_json(new_tokens,new_identificadores)
if etiquetas:
out2 = self.salida_texto(new_tokens,new_identificadores)#solo identificadores
else:
out2 = self.salida_texto(new_tokens,self.reemplazo_fake(new_identificadores))
return (
out1,
str(out2)
)
class ModeloDataset:
def __init__(self):
self.texto=""
self.idioma=""
self.modelo_ner=""
self.categoria_texto=""
self.tokenizer = AutoTokenizer.from_pretrained("BSC-LT/roberta_model_for_anonimization")
def reordenacion_tokens(self,tokens,caracter):
i=0
new_tokens=[]
ig_tokens=[]
for token in tokens:
print('tokensss:',tokens,caracter)
ind=len(new_tokens)
if i<len(tokens):
if token.startswith(caracter):
new_tokens.append(token)
i=i+1
else:
new_tokens[ind-1] = (new_tokens[ind-1] + token)
ig_tokens.append(i)
i=i+1
return (
new_tokens,
ig_tokens
)
def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes, tamano):
x=0
new_identificadores=[]
for token in predicted_tokens_classes:
if x not in ig_tokens:
if len(new_identificadores) < tamano:
new_identificadores.append(token)
x=x+1
else:
x=x+1
return new_identificadores
###
### Funciones para generar diversos datos fake dependiendo de la catagoria
###
def fake_pers(self):
return self.faker_.name(self)
def fake_word(self):
return self.faker_.word()
def fake_first_name(self):
return self.faker_.first_name()
def fake_last_name(self):
return self.faker_.last_name()
def fake_address(self):
return self.faker_.address()
def fake_sentence(self,n):
return self.faker_.sentence(nb_words=n)
def fake_text(self):
return self.faker_.text()
def fake_company(self):
return self.faker_.company()
def fake_city(self):
return self.faker_.city()
def reemplazo_fake(self,identificadores):
if self.idioma=='es':
self.faker_ = Faker('es_MX')
else:
self.faker_ = Faker('en_US')
new_iden=[]
for id in identificadores:
if 'PER' in id:
new_iden.append(self.fake_first_name())
elif 'ORG' in id:
new_iden.append(self.fake_company())
elif 'LOC' in id:
new_iden.append(self.fake_city())
else:
new_iden.append(id)
return new_iden
###
### Función que aplica los modelos de acuerdo al idioma detectado
###
def aplicar_modelo(self,_sentences,idioma, etiquetas):
if idioma=="es":
self.tokenizer = AutoTokenizer.from_pretrained("BSC-LT/roberta_model_for_anonimization")
tokenized_text=[self.tokenizer.tokenize(sentence[:500]) for sentence in _sentences]
ids = [self.tokenizer.convert_tokens_to_ids(x) for x in tokenized_text]
MAX_LEN=128
ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
input_ids = torch.tensor(ids)
self.model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
with torch.no_grad():
logits = self.model(input_ids).logits
predicted_token_class_ids = logits.argmax(-1)
i=0
_predicted_tokens_classes=[]
for a in predicted_token_class_ids:
_predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
i=i+1
labels = predicted_token_class_ids
loss = self.model(input_ids, labels=labels).loss
new_tokens=[]
ig_tok=[]
i=0
new_identificadores=[]
for item in tokenized_text:
aux1, aux2= self.reordenacion_tokens(item,"Ġ")
new_tokens.append(aux1)
ig_tok.append(aux2)
for items in _predicted_tokens_classes:
aux=self.reordenacion_identificadores(ig_tok[i],items,len(new_tokens[i]))
new_identificadores.append(aux)
i=i+1
return new_identificadores, new_tokens
else:
print('idioma:',idioma)
self.tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
tokenized_text=[self.tokenizer.tokenize(sentence[:500]) for sentence in _sentences]
ids = [self.tokenizer.convert_tokens_to_ids(x) for x in tokenized_text]
MAX_LEN=128
ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
input_ids = torch.tensor(ids)
self.model = AutoModelForTokenClassification.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
with torch.no_grad():
logits = self.model(input_ids).logits
predicted_token_class_ids = logits.argmax(-1)
i=0
_predicted_tokens_classes=[]
for a in predicted_token_class_ids:
_predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
i=i+1
labels = predicted_token_class_ids
loss = self.model(input_ids, labels=labels).loss
new_tokens=[]
ig_tok=[]
i=0
new_identificadores=[]
for item in tokenized_text:
aux1, aux2= self.reordenacion_tokens(item,"▁")
new_tokens.append(aux1)
ig_tok.append(aux2)
for items in _predicted_tokens_classes:
aux=self.reordenacion_identificadores(ig_tok[i],items,len(new_tokens[i]))
new_identificadores.append(aux)
i=i+1
return new_identificadores, new_tokens
###
### Procesa los tokens generados del texto de entradas con los tokens predichos, para generar los tokens por palabra
###
def salida_texto( self,tokens,pre_tokens):
new_labels = []
current_word = None
i=0
for token in tokens:
if pre_tokens[i]=='O' or 'MISC' in pre_tokens[i]:
new_labels.append(' ' +token.replace('▁','').replace('Ġ',''))
else:
new_labels.append(' ' + pre_tokens[i])
i=i+1
a=''
for i in new_labels:
a = a+i
return a
def salida_texto2(self, tokens,labels,etiquetas):
i=0
out=[]
for iden in labels:
if etiquetas:
out.append(self.salida_texto( iden,np.array(tokens[i])))
else:
out.append(self.salida_texto(iden,self.reemplazo_fake(np.array(tokens[i]))))
i=i+1
return out
def unir_array(self,_out):
i=0
salida=[]
for item in _out:
salida.append("".join(str(x) for x in _out[i]))
i=i+1
return salida
def unir_columna_valores(self,df,columna):
out = ','.join(df[columna])
return out
###
### Funcion para procesar archivos json, recibe archivo
###
class utilJSON:
def __init__(self,archivo):
with open(archivo, encoding='utf-8') as f:
self.data = json.load(f)
def obtener_keys_json(self,data):
out=[]
for key in data:
out.append(key)
return(out)
###
### funcion "flatten_json" tomada de https://levelup.gitconnected.com/a-deep-dive-into-nested-json-to-data-frame-with-python-69bdabb41938
### Renu Khandelwal Jul 23, 2023
def flatten_json(self,y):
try:
out = {}
def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x
flatten(y)
return out
except json.JSONDecodeError:
print("Error: The JSON document could not be decoded.")
except TypeError:
print("Error: Invalid operation or function argument type.")
except KeyError:
print("Error: One or more keys do not exist.")
except ValueError:
print("Error: Invalid value detected.")
except Exception as e:
print(f"An unexpected error occurred: {str(e)}")
def obtener_dataframe(self,data):
claves=self.obtener_keys_json(data)
if len(claves)==1:
data_flattened = [self.flatten_json(class_info) for class_info in data[claves[0]]]
df = pd.DataFrame(data_flattened)
else:
data_flattened = [self.flatten_json(class_info) for class_info in data]
df = pd.DataFrame(data_flattened)
return df
modelo = ModeloDataset()
model = Model()
def get_model():
return model
###
### Función que interactúa con la interfaz Gradio para el procesamiento de texto, csv o json
###
def procesar(texto,archivo, etiquetas):
if len(texto)>0:
print('text')
model.identificacion_idioma(texto[:1869])
return model.idioma + "/" + model.categoria_texto, model.predict(etiquetas),gr.Dataframe(),gr.File()
else:
if archivo.name.split(".")[1]=="csv":
print('csv')
df=pd.read_csv(archivo.name,delimiter=";",encoding='latin-1')
df_new = pd.DataFrame( columns=df.columns.values)
model.identificacion_idioma(df.iloc[0][0])
modelo.idioma=model.idioma
print(model.idioma)
for item in df.columns.values:
sentences=df[item]
ides, predicted = modelo.aplicar_modelo(sentences,model.idioma,etiquetas)
out=modelo.salida_texto2( ides,predicted,etiquetas)
print('out es:',out)
df_new[item] = modelo.unir_array(out)
return modelo.idioma,"", df_new, df_new.to_csv(sep='\t', encoding='utf-8',index=False)
else:
print('json')
if archivo.name.split(".")[1]=="json":
util = utilJSON(archivo.name)
df=util.obtener_dataframe(util.data)
df_new = pd.DataFrame( columns=df.columns.values)
model.identificacion_idioma(df.iloc[0][0])
modelo.idioma=model.idioma
for item in df.columns.values:
sentences=df[item]
ides, predicted = modelo.aplicar_modelo(sentences,modelo.idioma,etiquetas)
out=modelo.salida_texto2( ides,predicted,etiquetas)
print('out:',out)
df_new[item] = modelo.unir_array(out)
return modelo.idioma,"", df_new, df_new.to_csv(sep='\t', encoding='utf-8',index=False)
demo = gr.Interface(fn=procesar,inputs=["text",gr.File(), "checkbox"] , outputs=[gr.Label(label="idioma/categoría"),gr.Textbox(label="texto procesado"),gr.Dataframe(label="Datos procesados en dataframe",interactive=False),gr.Textbox(label="datos csv")])
#
demo.launch(share=True)
|