File size: 20,706 Bytes
0715d07
 
 
 
 
 
 
 
 
 
086d60c
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
4fe5a18
 
 
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fe5a18
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6633793
0715d07
 
 
4fe5a18
0715d07
9e63716
0715d07
 
6633793
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f58797
0715d07
 
 
 
 
 
 
 
 
bb4144d
6633793
0715d07
 
 
 
 
 
 
4fe5a18
bb4144d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d71688b
a021dd0
 
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
 
4fe5a18
 
 
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fe5a18
 
 
 
ac86bd6
0715d07
 
9e63716
0715d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e63716
4d5132e
9e63716
 
 
 
4d5132e
3d84520
4d5132e
9e63716
 
8dacfca
4d5132e
8dacfca
 
e6196e1
8dacfca
0715d07
9e63716
 
0715d07
 
9e63716
0715d07
 
beb281e
 
 
 
 
 
464b223
6633793
a408f8a
 
 
4fe5a18
a408f8a
9e63716
a408f8a
 
6633793
a408f8a
 
 
 
 
 
 
 
 
 
 
 
 
dda42c1
356147c
 
 
76ed2cd
356147c
c4cc94f
76ed2cd
dda42c1
cba7f50
356147c
 
6f1e876
4fe5a18
 
 
6f1e876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d71688b
 
 
476450d
d71688b
 
6f1e876
 
 
 
 
 
 
 
 
 
 
 
 
 
4fe5a18
 
 
6f1e876
a7e01a6
dc19c13
2959130
beb281e
dc19c13
a7e01a6
 
 
7287dc0
dc19c13
a7e01a6
3cd711b
a7e01a6
 
 
 
4fe5a18
3cd711b
a7e01a6
 
3cd711b
389be27
 
 
 
 
 
 
4f58797
389be27
 
 
 
 
 
 
 
 
4fe5a18
a7e01a6
 
8f4b0f4
dc19c13
2959130
beb281e
dc19c13
afa872b
dc19c13
a7e01a6
 
 
 
8f4b0f4
dc19c13
a7e01a6
3cd711b
a7e01a6
 
 
 
4fe5a18
3cd711b
a7e01a6
 
3cd711b
6f1e876
1735cb3
 
25bf21a
1735cb3
 
76ed2cd
3d84520
1735cb3
 
6f1e876
b9941e4
a6e721c
76d1bc6
 
25bf21a
8f8acfe
6f1e876
a9087d6
4fe5a18
 
 
 
76ed2cd
beb281e
 
 
76ed2cd
 
 
befc23c
76ed2cd
 
 
 
 
 
 
6f1e876
beb281e
 
76ed2cd
6caf72c
6f1e876
 
 
 
beb281e
 
76ed2cd
2f2e08d
beb281e
 
 
 
4fe5a18
beb281e
 
 
 
 
4fe5a18
 
 
df8df97
 
 
 
 
 
 
 
 
d7d9984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fe5a18
d7d9984
df8df97
 
 
8f8acfe
df8df97
d7d9984
8f8acfe
d7d9984
8f8acfe
d7d9984
 
df8df97
8f8acfe
d7d9984
 
df8df97
 
beb281e
0715d07
 
 
4fe5a18
 
 
ac86bd6
 
 
beb281e
7ca333b
ccd3720
3ecaa84
beb281e
a7e01a6
fd21c0a
7ca333b
ebc77f2
fd21c0a
 
91d86cf
0040a1b
9e63716
fd21c0a
 
2f2e08d
6f1e876
4fe5a18
2f2e08d
 
 
9e63716
4fe5a18
fd21c0a
7ca333b
fd21c0a
a9d4519
df8df97
f09ba10
91d86cf
 
fb5e509
9e63716
4c13399
 
f97dfd6
91d86cf
4fe5a18
2f2e08d
f97dfd6
320fde3
ccd3720
4944be6
4fe5a18
9e63716
df8df97
db83ceb
73dfd2e
beb281e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import gradio as gr
import torch
import json
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, RobertaForTokenClassification
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from json import JSONEncoder
from faker import Faker
from keras.utils import pad_sequences
class out_json():
    def __init__(self, w,l):
        self.word = w
        self.label = l
class MyEncoder(JSONEncoder):
        def default(self, o):
            return o.__dict__
class Model:
   def __init__(self):
        self.texto=""
        self.idioma=""
        self.modelo_ner=""
        self.categoria_texto=""
   ##
   ### Función que aplica el modelo e identifica su idioma
   ###      
   def identificacion_idioma(self,text): 
        self.texto=text
        tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
        model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
        
        inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
        
        with torch.no_grad():
            logits = model(**inputs).logits
        
        preds = torch.softmax(logits, dim=-1)
        
       
        id2lang = model.config.id2label
        vals, idxs = torch.max(preds, dim=1)
    
        #retorna el idioma con mayor porcentaje
        maximo=vals.max()
        idioma=''
        porcentaje=0
        for k, v in zip(idxs, vals):
           if v.item()==maximo:
             idioma,porcentaje=id2lang[k.item()],v.item()
             
           
        if idioma=='es':
             self.idioma="es"
             self.modelo_ner='BSC-LT/roberta_model_for_anonimization'
             self.faker_ = Faker('es_MX')
             self.model = RobertaForTokenClassification.from_pretrained(self.modelo_ner)     
        else:
             self.idioma="en"
             self.faker_ = Faker('en_US')
             self.modelo_ner="FacebookAI/xlm-roberta-large-finetuned-conll03-english"     
             self.model = AutoModelForTokenClassification.from_pretrained(self.modelo_ner)   
        self.categorizar_texto(self.texto)
   def reordenacion_tokens(self,tokens,caracter):
        
        i=0
        new_tokens=[]
        ig_tokens=[] 
        for token in tokens:
            print('token_texto:',token,caracter)
            ind=len(new_tokens)
            if i<len(tokens):
                 if  token.startswith(caracter):
                    
                    new_tokens.append(token)
                    
                    i=i+1
                 else:
                    new_tokens[ind-1] = (new_tokens[ind-1] + token)
                    ig_tokens.append(i)
                    
                    i=i+1
        return (
                new_tokens,
                ig_tokens
                )  
        
   def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes):
        x=0
        new_identificadores=[]
        for token in predicted_tokens_classes:
            
            if x not in ig_tokens:
                new_identificadores.append(token)
                x=x+1
            else:
                 x=x+1
        return new_identificadores
   def salida_json(self,tokens,pre_tokens):
       list=[]
       i=0
       for t in tokens:
           if pre_tokens[i]!='O':
              a = out_json(t.replace('▁','').replace('Ġ','').replace('Ċ',''),pre_tokens[i].replace('▁',''))
              list.append(a)
           i=i+1
       return MyEncoder().encode(list)   
   def salida_texto( self,tokens,pre_tokens):
        new_labels = []
        current_word = None
        i=0
        for token in tokens:
               
            if pre_tokens[i]=='O' or 'MISC' in pre_tokens[i]:
              new_labels.append(' ' +token.replace('▁','').replace('Ġ',''))
            else:
               new_labels.append(' ' + pre_tokens[i])
            i=i+1 
        a=''    
        for i in new_labels:
            a = a+i
        return a    
        
   def salida_texto_anonimizado(self, ids,pre_tokens):
    new_labels = []
    current_word = None
    i=0
    for identificador in pre_tokens:
       
        if identificador=='O' or 'OTH' in identificador:
            new_labels.append(self.tokenizer.decode(ids[i]))
        else:
            new_labels.append(' ' + identificador)
        i=i+1
    a=''
    for i in new_labels:
        a = a+i
    return a    
   def formato_salida(self,out):
       a=""
       for i in out:
          a = a + i.replace('▁','').replace(' ','') + ' '
       return  a  
   def fake_pers(self):
       return self.faker_.name(self)
   def fake_word(self):
       return self.faker_.word()
   def fake_first_name(self):
       return self.faker_.first_name()       
   def fake_last_name(self):
       return self.faker_.last_name()    
   def fake_address(self):
       return self.faker_.address()
   def fake_sentence(self,n):
       return self.faker_.sentence(nb_words=n)
   def fake_text(self):
       return self.faker_.text()
   def fake_company(self):
       return self.faker_.company() 
   def fake_city(self):
       return self.faker_.city()     
   def reemplazo_fake(self,identificadores):
      
           

       new_iden=[]
       for id in identificadores:
           
           if 'PER' in id:
               new_iden.append(self.fake_first_name())
           
           elif 'ORG' in id:
               new_iden.append(self.fake_company())
           
           elif 'LOC' in id:
               new_iden.append(self.fake_city())
           else:
               new_iden.append(id)
       return new_iden
  ###
  ### Función que aplica los modelo para categorizar el texto segun su contexto
  ### 
   def categorizar_texto(self,texto):
        name="elozano/bert-base-cased-news-category"       
        tokenizer = AutoTokenizer.from_pretrained(name)
        model_ = AutoModelForSequenceClassification.from_pretrained(name)
        
        inputs_ = tokenizer(texto, padding=True, truncation=True, return_tensors="pt")
        
        with torch.no_grad():
            logits = model_(**inputs_).logits
        
        preds = torch.softmax(logits, dim=-1)
        
       
        id2lang = model_.config.id2label
        vals, idxs = torch.max(preds, dim=1)
        
        #retorna el idioma con mayor porcentaje
        maximo=vals.max()
        cat=''
        self.categoria_texto=''
        porcentaje=0
        for k, v in zip(idxs, vals):
           if v.item()==maximo:
             cat,porcentaje=id2lang[k.item()],v.item()
             self.categoria_texto=cat  
             
        
        return  cat, porcentaje    
  ###
  ### Función que aplica los modelos sobre un texto
  ###   
   def predict(self,etiquetas):
        
        categoria, porcentaje = self.categorizar_texto(self.texto)
        print(categoria, porcentaje)
       
        self.tokenizer  = AutoTokenizer.from_pretrained(self.modelo_ner)
        tokens = self.tokenizer.tokenize(self.texto)
       
        ids = self.tokenizer.convert_tokens_to_ids(tokens)
        
        input_ids = torch.tensor([ids])
        with torch.no_grad():
           logits = self.model(input_ids).logits
        
        predicted_token_class_ids = logits.argmax(-1)
        
        predicted_tokens_classes = [self.model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
        
        labels = predicted_token_class_ids
        loss = self.model(input_ids, labels=labels).loss
      
        if (self.idioma=='es'):
            
            new_tokens,ig_tokens=self.reordenacion_tokens(tokens,'Ġ')
             
            
        else:
            new_tokens,ig_tokens=self.reordenacion_tokens(tokens,'▁')  
           
        new_identificadores = self.reordenacion_identificadores(ig_tokens,predicted_tokens_classes)  
        out1 = self.salida_json(new_tokens,new_identificadores)  
        if etiquetas:            
                out2 = self.salida_texto(new_tokens,new_identificadores)#solo identificadores
        else: 
                out2 = self.salida_texto(new_tokens,self.reemplazo_fake(new_identificadores))   
        
              
        return (
          
            
            out1,
            str(out2)
           
            
        )  
class ModeloDataset:
    def __init__(self):
        self.texto=""
        self.idioma=""
        self.modelo_ner=""
        self.categoria_texto=""
        self.tokenizer  = AutoTokenizer.from_pretrained("BSC-LT/roberta_model_for_anonimization")
    def reordenacion_tokens(self,tokens,caracter):
        
        i=0
        new_tokens=[]
        ig_tokens=[] 
        for token in tokens:
            print('tokensss:',tokens,caracter)
            ind=len(new_tokens)
            if i<len(tokens):
                 if  token.startswith(caracter):
                    
                    new_tokens.append(token)
                    
                    i=i+1
                 else:
                    new_tokens[ind-1] = (new_tokens[ind-1] + token)
                    ig_tokens.append(i)
                    
                    i=i+1
        return (
                new_tokens,
                ig_tokens
                )  
    def reordenacion_identificadores(self,ig_tokens,predicted_tokens_classes, tamano):
        x=0
        new_identificadores=[]
        for token in predicted_tokens_classes:
            
            if x not in ig_tokens:
                if len(new_identificadores) < tamano:
                    
                    new_identificadores.append(token)
                x=x+1
            else:
                 x=x+1
        return new_identificadores 
  ###
  ### Funciones para generar diversos datos fake dependiendo de la catagoria
  ### 
    def fake_pers(self):
       return self.faker_.name(self)
    def fake_word(self):
        return self.faker_.word()
    def fake_first_name(self):
        return self.faker_.first_name()       
    def fake_last_name(self):
        return self.faker_.last_name()    
    def fake_address(self):
        return self.faker_.address()
    def fake_sentence(self,n):
        return self.faker_.sentence(nb_words=n)
    def fake_text(self):
        return self.faker_.text()
    def fake_company(self):
        return self.faker_.company() 
    def fake_city(self):
        return self.faker_.city()     
    def reemplazo_fake(self,identificadores):
            
        if self.idioma=='es':
             self.faker_ = Faker('es_MX')
            
        else:
             self.faker_ = Faker('en_US')
        new_iden=[]
        for id in identificadores:
            
            if 'PER' in id:
                new_iden.append(self.fake_first_name())
            
            elif 'ORG' in id:
                new_iden.append(self.fake_company())
            
            elif 'LOC' in id:
                new_iden.append(self.fake_city())
            else:
                new_iden.append(id)
        return new_iden          
  ###
  ### Función que aplica los modelos de acuerdo al idioma detectado
  ### 
    def aplicar_modelo(self,_sentences,idioma, etiquetas):
        if idioma=="es":
            self.tokenizer = AutoTokenizer.from_pretrained("BSC-LT/roberta_model_for_anonimization")
            tokenized_text=[self.tokenizer.tokenize(sentence[:500]) for sentence in _sentences]
        
            ids = [self.tokenizer.convert_tokens_to_ids(x) for x in tokenized_text]   
            MAX_LEN=128
            ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
            input_ids = torch.tensor(ids) 
                             
            self.model = RobertaForTokenClassification.from_pretrained("BSC-LT/roberta_model_for_anonimization")
            with torch.no_grad():
             logits = self.model(input_ids).logits
            predicted_token_class_ids = logits.argmax(-1)
            i=0
            _predicted_tokens_classes=[]
            for a in predicted_token_class_ids:
                    
                    _predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
                    i=i+1  
            labels = predicted_token_class_ids
            loss = self.model(input_ids, labels=labels).loss

            new_tokens=[]
            ig_tok=[]
            i=0
            new_identificadores=[]
            for item in tokenized_text:
               
               aux1, aux2= self.reordenacion_tokens(item,"Ġ")
               new_tokens.append(aux1)
               ig_tok.append(aux2)
             
            
            for items in _predicted_tokens_classes:
                aux=self.reordenacion_identificadores(ig_tok[i],items,len(new_tokens[i]))
                new_identificadores.append(aux)
                i=i+1

            return new_identificadores, new_tokens
        else:
            
            print('idioma:',idioma)            
            self.tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
            tokenized_text=[self.tokenizer.tokenize(sentence[:500]) for sentence in _sentences]
        
            ids = [self.tokenizer.convert_tokens_to_ids(x) for x in tokenized_text]
            

            MAX_LEN=128
            ids=pad_sequences(ids,maxlen=MAX_LEN,dtype="long",truncating="post", padding="post")
            input_ids = torch.tensor(ids) 
            
                    
            self.model = AutoModelForTokenClassification.from_pretrained("FacebookAI/xlm-roberta-large-finetuned-conll03-english")
            with torch.no_grad():
             logits = self.model(input_ids).logits
            predicted_token_class_ids = logits.argmax(-1)
            i=0
            _predicted_tokens_classes=[]
            for a in predicted_token_class_ids:
                    
                    _predicted_tokens_classes.append([self.model.config.id2label[t.item()] for t in predicted_token_class_ids[i]])
                    i=i+1  
            labels = predicted_token_class_ids
            loss = self.model(input_ids, labels=labels).loss

            new_tokens=[]
            ig_tok=[]
            i=0
            new_identificadores=[]
            for item in tokenized_text:
               
               aux1, aux2= self.reordenacion_tokens(item,"▁")
               new_tokens.append(aux1)
               ig_tok.append(aux2)
             
            
            for items in _predicted_tokens_classes:
                aux=self.reordenacion_identificadores(ig_tok[i],items,len(new_tokens[i]))
                new_identificadores.append(aux)
                i=i+1
            
            
            return new_identificadores, new_tokens
        
  ###
  ### Procesa los tokens generados del texto de entradas con los tokens predichos, para generar los tokens por palabra
  ###     
    def salida_texto( self,tokens,pre_tokens):
        new_labels = []
        current_word = None
        i=0
        for token in tokens:
               
            if pre_tokens[i]=='O' or 'MISC' in pre_tokens[i]:
              new_labels.append(' ' +token.replace('▁','').replace('Ġ',''))
            else:
               new_labels.append(' ' + pre_tokens[i])
            i=i+1 
        a=''    
        for i in new_labels:
            a = a+i
        return a 
    def salida_texto2(self, tokens,labels,etiquetas):
        i=0
        out=[]
        for iden in labels:
          
           if etiquetas:
              out.append(self.salida_texto( iden,np.array(tokens[i])))
           else:   
              out.append(self.salida_texto(iden,self.reemplazo_fake(np.array(tokens[i]))))
           i=i+1
        
        return out   

    def unir_array(self,_out):
        i=0
        salida=[]
        for item in _out:
            salida.append("".join(str(x) for x in _out[i]))
            i=i+1
        return salida
    def unir_columna_valores(self,df,columna):
        out = ','.join(df[columna])
        return out
###
### Funcion para procesar archivos json, recibe archivo
###
class utilJSON:
    def __init__(self,archivo):
      with open(archivo, encoding='utf-8') as f:
         self.data = json.load(f)
    def obtener_keys_json(self,data):
     out=[]
     for key in data:
        out.append(key)
     return(out)
    ###
    ### funcion "flatten_json" tomada de https://levelup.gitconnected.com/a-deep-dive-into-nested-json-to-data-frame-with-python-69bdabb41938 
    ### Renu Khandelwal Jul 23, 2023
    def flatten_json(self,y):
        try:
            out = {}
    
            def flatten(x, name=''):
                if type(x) is dict:
                    for a in x:
                        flatten(x[a], name + a + '_')
                elif type(x) is list:
                    i = 0
                    for a in x:
                        flatten(a, name + str(i) + '_')
                        i += 1
                else:
                    out[name[:-1]] = x
    
            flatten(y)
            return out
        except json.JSONDecodeError:
            print("Error: The JSON document could not be decoded.")
        except TypeError:
            print("Error: Invalid operation or function argument type.")
        except KeyError:
            print("Error: One or more keys do not exist.")
        except ValueError:
            print("Error: Invalid value detected.")
        except Exception as e:
            
            print(f"An unexpected error occurred: {str(e)}") 
        
    def obtener_dataframe(self,data):
        claves=self.obtener_keys_json(data)
        
        if len(claves)==1:
           
            
            data_flattened = [self.flatten_json(class_info) for class_info in data[claves[0]]]
            
            df = pd.DataFrame(data_flattened)
           
        else:
            
            data_flattened = [self.flatten_json(class_info) for class_info in data]
            df = pd.DataFrame(data_flattened)
            
        return df
modelo = ModeloDataset()
model = Model()
def get_model():
        return model
###
### Función que interactúa con la interfaz Gradio para el procesamiento de texto, csv o json
### 
def procesar(texto,archivo, etiquetas):
    
    
    if len(texto)>0: 
        print('text')
        model.identificacion_idioma(texto[:1869])
        return model.idioma + "/" + model.categoria_texto, model.predict(etiquetas),gr.Dataframe(),gr.File()
    else:

        if archivo.name.split(".")[1]=="csv":
            print('csv')
            df=pd.read_csv(archivo.name,delimiter=";",encoding='latin-1')
        
            df_new = pd.DataFrame( columns=df.columns.values)
            model.identificacion_idioma(df.iloc[0][0])
            modelo.idioma=model.idioma
            print(model.idioma)
            for item in df.columns.values:
                sentences=df[item]
                 
                ides, predicted = modelo.aplicar_modelo(sentences,model.idioma,etiquetas)
                out=modelo.salida_texto2( ides,predicted,etiquetas)
                print('out es:',out)
                df_new[item] = modelo.unir_array(out)
                
            return modelo.idioma,"", df_new, df_new.to_csv(sep='\t', encoding='utf-8',index=False)
            
        else:
            print('json')
            if archivo.name.split(".")[1]=="json":
                util = utilJSON(archivo.name)        
                df=util.obtener_dataframe(util.data)
                df_new = pd.DataFrame( columns=df.columns.values)
                
                model.identificacion_idioma(df.iloc[0][0])
                modelo.idioma=model.idioma
              
                for item in df.columns.values:
                    sentences=df[item]
                    
                    ides, predicted = modelo.aplicar_modelo(sentences,modelo.idioma,etiquetas)
                    out=modelo.salida_texto2( ides,predicted,etiquetas)
                                        
                    print('out:',out)
                    df_new[item] = modelo.unir_array(out)


                
                return modelo.idioma,"", df_new, df_new.to_csv(sep='\t', encoding='utf-8',index=False)
            
demo = gr.Interface(fn=procesar,inputs=["text",gr.File(), "checkbox"] , outputs=[gr.Label(label="idioma/categoría"),gr.Textbox(label="texto procesado"),gr.Dataframe(label="Datos procesados en dataframe",interactive=False),gr.Textbox(label="datos csv")])
       #                                                      
demo.launch(share=True)