File size: 42,368 Bytes
8b8ed7d acded99 2905dfe 3dc5893 60f8433 02342db 560aed3 83d7066 560aed3 99440dc a792b29 8b8ed7d dab3f5c 8b8ed7d f5b856b 8b8ed7d bf49bf4 dab3f5c 8b8ed7d 3dc5893 93c7bb1 75a3ee0 93c7bb1 30f2144 f8edaf4 65408f0 560aed3 ac6bc3f 46ec4ad 1142e29 ac6bc3f 1142e29 ac6bc3f 1142e29 ac6bc3f 1142e29 ac6bc3f 87d95cd 68ed8b1 87d95cd b5dc2d0 f3a4834 560aed3 d2e54bb 560aed3 fc7389c 560aed3 d2e54bb 560aed3 fc7389c 560aed3 6c2f452 d2e54bb fc7389c 560aed3 fc7389c 560aed3 d2e54bb fc7389c 560aed3 fc7389c 560aed3 b5dc2d0 a792b29 6e967dd 87d95cd 68ed8b1 a792b29 6e967dd 2ccffa0 6e967dd d44d7bd 6e967dd 44b5969 87d95cd 44b5969 b5dc2d0 a792b29 87d95cd 94a59c5 b5dc2d0 a792b29 9a99a31 44b5969 b5dc2d0 560aed3 d4733d8 560aed3 99440dc 825590c a3da059 ac6bc3f 99440dc ac6bc3f 99440dc bf83601 99440dc bf83601 99440dc ac6bc3f 99440dc 034ddc7 99440dc 08904b5 2905dfe f0830d9 2905dfe 08904b5 a6ab2dc 87d95cd 37f1ab4 560aed3 b7b0f67 2a5a9ef 80447c9 b7b0f67 2a5a9ef 7399f1e 8fd769d c57f362 8b8ed7d 08904b5 8b8ed7d 719f4db 8b8ed7d 08904b5 8b8ed7d 719f4db 8b8ed7d 08904b5 8b8ed7d 719f4db 8b8ed7d 08904b5 8b8ed7d 719f4db 8b8ed7d f48be63 8b8ed7d 560aed3 f5b856b af564ea b3f2d1d af564ea bcf2d35 b3f2d1d bcf2d35 1451f69 b3f2d1d 3dc5893 7351dbd 64046ce 3a44a8f 64046ce 3a44a8f 3ddaf11 40746ea 788d24e 3ddaf11 788d24e 87469a0 b3f2d1d 93c7bb1 1d2022c 23a70c2 24e0d93 1d2022c dc2990d 93c7bb1 def6532 93c7bb1 bf83601 def6532 54e8c41 b3f2d1d def6532 acded99 def6532 75a3ee0 def6532 75a3ee0 def6532 6489a03 1c4c7b5 acded99 6146b94 70ce044 b3f2d1d b7b0f67 8b8ed7d b3f2d1d 560aed3 8a08aed 560aed3 a7b7df3 328282a ce38201 9fd8cd1 c819f7e ce38201 c819f7e ce38201 c819f7e ce38201 c819f7e bf83601 560aed3 328282a 8a08aed 90e9e57 a456741 7e535bc eb8a83e 4ad564e a456741 0767865 1f55b95 daf5242 1f55b95 daf5242 3838254 1410ca4 daf5242 1410ca4 daf5242 1410ca4 daf5242 1410ca4 daf5242 3fd11f7 1410ca4 3fd11f7 46b051d 1410ca4 8a08aed e92c083 8a08aed 1410ca4 7e535bc 3838254 a456741 1410ca4 8a08aed 1189a30 560aed3 cbcf3c2 dc5062c 80447c9 dc5062c 560aed3 2ee45f0 560aed3 dc5062c 562133c dc5062c d5ee515 dc5062c b7b0f67 21a8d72 dc5062c 80447c9 dc5062c b037ea3 94a59c5 46e9839 94a59c5 39469d2 fa5a38d 46e9839 87d95cd 560aed3 87d95cd 2aa4fdc 69bcace 34fe3eb 8da622a 7bdb194 f260931 e7a5550 f260931 e7a5550 34fe3eb 69bcace 87d95cd 560aed3 6fbc2db 68ed8b1 80447c9 cbcf3c2 b7b0f67 2aa4fdc 80447c9 94a59c5 b5dc2d0 560aed3 87d95cd dc5062c 8da622a 560aed3 87d95cd 80447c9 560aed3 87d95cd b7b0f67 80447c9 87d95cd b037ea3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 |
import os
import pandas as pd
import datasets
import sys
import pickle
import subprocess
import shutil
from urllib.request import urlretrieve
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import numpy as np
from tqdm import tqdm
import yaml
import time
import torch
_DESCRIPTION = """\
Dataset for mimic4 data, by default for the Mortality task.
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype.
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main'
mimic path should have this form : "path/to/mimic4data/from/username/mimiciv/2.2"
If you choose a Custom task provide a configuration file for the Time series.
"""
_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset"
_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
_URL = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline"
_DATA_GEN = 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/data_generation_icu_modify.py'
_DAY_INT= 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/day_intervals_cohort_v22.py'
_CONFIG_URLS = {'los' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/los.config',
'mortality' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/mortality.config',
'phenotype' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/phenotype.config',
'readmission' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main/config/readmission.config'
}
def check_config(task,config_file):
with open(config_file) as f:
config = yaml.safe_load(f)
if task=='Phenotype':
disease_label = config['disease_label']
else :
disease_label = ""
time = config['timePrediction']
label = task
timeW = config['timeWindow']
include=int(timeW.split()[1])
bucket = config['timebucket']
radimp = config['radimp']
predW = config['predW']
disease_filter = config['disease_filter']
icu_no_icu = config['icu_no_icu']
groupingICD = config['groupingICD']
chart_flag = config['chart']
output_flag = config['output']
diag_flag= config['diagnosis']
proc_flag = config['proc']
meds_flag = config['meds']
select_diag= config['select_diag']
select_med= config['select_med']
select_proc= config['select_proc']
select_out = config['select_out']
select_chart = config['select_chart']
outlier_removal=config['outlier_removal']
thresh=config['outlier']
left_thresh=config['left_outlier']
assert (isinstance(select_diag,bool) and isinstance(select_med,bool) and isinstance(select_proc,bool) and isinstance(select_out,bool) and isinstance(select_chart,bool), " select_diag, select_chart, select_med, select_proc, select_out should be boolean")
assert (isinstance(chart_flag,bool) and isinstance(output_flag,bool) and isinstance(diag_flag,bool) and isinstance(proc_flag,bool) and isinstance(meds_flag,bool), "chart_flag, output_flag, diag_flag, proc_flag, meds_flag should be boolean")
if task=='Phenotype':
if disease_label=='Heart Failure':
label='Readmission'
time=30
disease_label='I50'
elif disease_label=='CAD':
label='Readmission'
time=30
disease_label='I25'
elif disease_label=='CKD':
label='Readmission'
time=30
disease_label='N18'
elif disease_label=='COPD':
label='Readmission'
time=30
disease_label='J44'
else :
raise ValueError('Disease label not correct provide one in the list: Heart Failure, CAD, CKD, COPD')
predW=0
assert (timeW[0]=='Last' and include<=72 and include>=24, "Time window should be between Last 24 and Last 72")
elif task=='Mortality':
time=0
label= 'Mortality'
assert (predW<=8 and predW>=2, "Prediction window should be between 2 and 8")
assert (timeW[0]=='Fisrt' and include<=72 and include>=24, "Time window should be between First 24 and First 72")
elif task=='Length of Stay':
label= 'Length of Stay'
assert (timeW[0]=='Fisrt' and include<=72 and include>=24, "Time window should be between Fisrt 24 and Fisrt 72")
assert (time<=10 and time>=1, "Length of stay should be between 1 and 10")
predW=0
elif task=='Readmission':
label= 'Readmission'
assert (timeW[0]=='Last' and include<=72 and include>=24, "Time window should be between Last 24 and Last 72")
assert (time<=150 and time>=10 and time%10==0, "Readmission window should be between 10 and 150 with a step of 10")
predW=0
else:
raise ValueError('Task not correct')
assert( disease_filter in ['Heart Failure','COPD','CKD','CAD',""], "Disease filter should be one of the following: Heart Failure, COPD, CKD, CAD or empty")
assert( icu_no_icu in ['ICU'], "Dataset currently only supports ICU data")
assert( groupingICD in ['Convert ICD-9 to ICD-10 and group ICD-10 codes','Keep both ICD-9 and ICD-10 codes','Convert ICD-9 to ICD-10 codes'], "Grouping ICD should be one of the following: Convert ICD-9 to ICD-10 and group ICD-10 codes, Keep both ICD-9 and ICD-10 codes, Convert ICD-9 to ICD-10 codes")
assert (bucket<=6 and bucket>=1 and isinstance(bucket, int), "Time bucket should be between 1 and 6 and an integer")
assert (radimp in ['No Imputation', 'forward fill and mean','forward fill and median'], "imputation should be one of the following: No Imputation, forward fill and mean, forward fill and median")
if chart_flag:
assert (left_thresh>=0 and left_thresh<=10 and isinstance(left_thresh, int), "Left outlier threshold should be between 0 and 10 and an integer")
assert (thresh>=90 and thresh<=99 and isinstance(thresh, int), "Outlier threshold should be between 90 and 99 and an integer")
assert (outlier_removal in ['No outlier detection','Impute Outlier (default:98)','Remove outliers (default:98)'], "Outlier removal should be one of the following: No outlier detection, Impute Outlier (default:98), Remove outliers (default:98)")
return label, time, disease_label, predW
def create_vocab(file,task):
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
condVocab = pickle.load(fp)
condVocabDict={}
condVocabDict[0]=0
for val in range(len(condVocab)):
condVocabDict[condVocab[val]]= val+1
return condVocabDict
def gender_vocab():
genderVocabDict={}
genderVocabDict['<PAD>']=0
genderVocabDict['M']=1
genderVocabDict['F']=2
return genderVocabDict
def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
condVocabDict={}
procVocabDict={}
medVocabDict={}
outVocabDict={}
chartVocabDict={}
labVocabDict={}
ethVocabDict={}
ageVocabDict={}
genderVocabDict={}
insVocabDict={}
ethVocabDict=create_vocab('ethVocab',task)
with open('./data/dict/'+task+'/ethVocabDict', 'wb') as fp:
pickle.dump(ethVocabDict, fp)
ageVocabDict=create_vocab('ageVocab',task)
with open('./data/dict/'+task+'/ageVocabDict', 'wb') as fp:
pickle.dump(ageVocabDict, fp)
genderVocabDict=gender_vocab()
with open('./data/dict/'+task+'/genderVocabDict', 'wb') as fp:
pickle.dump(genderVocabDict, fp)
insVocabDict=create_vocab('insVocab',task)
with open('./data/dict/'+task+'/insVocabDict', 'wb') as fp:
pickle.dump(insVocabDict, fp)
if diag_flag:
file='condVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
condVocabDict = pickle.load(fp)
if proc_flag:
file='procVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
procVocabDict = pickle.load(fp)
if med_flag:
file='medVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
medVocabDict = pickle.load(fp)
if out_flag:
file='outVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
outVocabDict = pickle.load(fp)
if chart_flag:
file='chartVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
chartVocabDict = pickle.load(fp)
if lab_flag:
file='labsVocab'
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
labVocabDict = pickle.load(fp)
return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
meds=data['Med']
proc = data['Proc']
out = data['Out']
chart = data['Chart']
cond= data['Cond']['fids']
cond_df=pd.DataFrame()
proc_df=pd.DataFrame()
out_df=pd.DataFrame()
chart_df=pd.DataFrame()
meds_df=pd.DataFrame()
#demographic
demo=pd.DataFrame(columns=['Age','gender','ethnicity','label','insurance'])
new_row = {'Age': data['age'], 'gender': data['gender'], 'ethnicity': data['ethnicity'], 'label': data['label'], 'insurance': data['insurance']}
demo = demo.append(new_row, ignore_index=True)
##########COND#########
if (feat_cond):
#get all conds
with open("./data/dict/"+task+"/condVocab", 'rb') as fp:
conDict = pickle.load(fp)
conds=pd.DataFrame(conDict,columns=['COND'])
features=pd.DataFrame(np.zeros([1,len(conds)]),columns=conds['COND'])
#onehot encode
if(cond ==[]):
cond_df=pd.DataFrame(np.zeros([1,len(features)]),columns=features['COND'])
cond_df=cond_df.fillna(0)
else:
cond_df=pd.DataFrame(cond,columns=['COND'])
cond_df['val']=1
cond_df=(cond_df.drop_duplicates()).pivot(columns='COND',values='val').reset_index(drop=True)
cond_df=cond_df.fillna(0)
oneh = cond_df.sum().to_frame().T
combined_df = pd.concat([features,oneh],ignore_index=True).fillna(0)
combined_oneh=combined_df.sum().to_frame().T
cond_df=combined_oneh
##########PROC#########
if (feat_proc):
with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
procDic = pickle.load(fp)
if proc :
feat=proc.keys()
proc_val=[proc[key] for key in feat]
procedures=pd.DataFrame(procDic,columns=['PROC'])
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
procs=pd.DataFrame(columns=feat)
for p,v in zip(feat,proc_val):
procs[p]=v
procs.columns=pd.MultiIndex.from_product([["PROC"], procs.columns])
proc_df = pd.concat([features,procs],ignore_index=True).fillna(0)
else:
procedures=pd.DataFrame(procDic,columns=['PROC'])
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
proc_df=features.fillna(0)
##########OUT#########
if (feat_out):
with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
outDic = pickle.load(fp)
if out :
feat=out.keys()
out_val=[out[key] for key in feat]
outputs=pd.DataFrame(outDic,columns=['OUT'])
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
outs=pd.DataFrame(columns=feat)
for o,v in zip(feat,out_val):
outs[o]=v
outs.columns=pd.MultiIndex.from_product([["OUT"], outs.columns])
out_df = pd.concat([features,outs],ignore_index=True).fillna(0)
else:
outputs=pd.DataFrame(outDic,columns=['OUT'])
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
out_df=features.fillna(0)
##########CHART#########
if (feat_chart):
with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
chartDic = pickle.load(fp)
if chart:
charts=chart['val']
feat=charts.keys()
chart_val=[charts[key] for key in feat]
charts=pd.DataFrame(chartDic,columns=['CHART'])
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
chart=pd.DataFrame(columns=feat)
for c,v in zip(feat,chart_val):
chart[c]=v
chart.columns=pd.MultiIndex.from_product([["CHART"], chart.columns])
chart_df = pd.concat([features,chart],ignore_index=True).fillna(0)
else:
charts=pd.DataFrame(chartDic,columns=['CHART'])
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
chart_df=features.fillna(0)
###MEDS
if (feat_meds):
with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
medDic = pickle.load(fp)
if meds:
feat=meds['signal'].keys()
med_val=[meds['amount'][key] for key in feat]
meds=pd.DataFrame(medDic,columns=['MEDS'])
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
med=pd.DataFrame(columns=feat)
for m,v in zip(feat,med_val):
med[m]=v
med.columns=pd.MultiIndex.from_product([["MEDS"], med.columns])
meds_df = pd.concat([features,med],ignore_index=True).fillna(0)
else:
meds=pd.DataFrame(medDic,columns=['MEDS'])
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
meds_df=features.fillna(0)
dyn_df = pd.concat([meds_df,proc_df,out_df,chart_df], axis=1)
return dyn_df,cond_df,demo
def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
stat_df = torch.zeros(size=(1,0))
demo_df = torch.zeros(size=(1,0))
meds = torch.zeros(size=(0,0))
charts = torch.zeros(size=(0,0))
proc = torch.zeros(size=(0,0))
out = torch.zeros(size=(0,0))
lab = torch.zeros(size=(0,0))
stat_df = torch.zeros(size=(1,0))
demo_df = torch.zeros(size=(1,0))
feat_lab = False
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds)
###########""
if feat_chart:
charts = dyn['CHART']
charts=charts.to_numpy()
charts = torch.tensor(charts)
charts = charts.unsqueeze(0)
charts = torch.tensor(charts)
charts = charts.type(torch.LongTensor)
if feat_meds:
meds = dyn['MEDS']
meds=meds.to_numpy()
meds = torch.tensor(meds)
meds = meds.unsqueeze(0)
meds = torch.tensor(meds)
meds = meds.type(torch.LongTensor)
if feat_proc:
proc = dyn['PROC']
proc=proc.to_numpy()
proc = torch.tensor(proc)
proc = proc.unsqueeze(0)
proc = torch.tensor(proc)
proc = proc.type(torch.LongTensor)
if feat_out:
out = dyn['OUT']
out=out.to_numpy()
out = torch.tensor(out)
out = out.unsqueeze(0)
out = torch.tensor(out)
out = out.type(torch.LongTensor)
if feat_lab:
lab = dyn['LAB']
lab=lab.to_numpy()
lab = torch.tensor(lab)
lab = lab.unsqueeze(0)
lab = torch.tensor(lab)
lab = lab.type(torch.LongTensor)
####################""
stat=cond_df
stat = stat.to_numpy()
stat = torch.tensor(stat)
if stat_df[0].nelement():
stat_df = torch.cat((stat_df,stat),0)
else:
stat_df = stat
y = int(demo['label'])
demo["gender"].replace(gender_vocab, inplace=True)
demo["ethnicity"].replace(eth_vocab, inplace=True)
demo["insurance"].replace(ins_vocab, inplace=True)
demo["Age"].replace(age_vocab, inplace=True)
demo=demo[["gender","ethnicity","insurance","Age"]]
demo = demo.values
demo = torch.tensor(demo)
if demo_df[0].nelement():
demo_df = torch.cat((demo_df,demo),0)
else:
demo_df = demo
stat_df = torch.tensor(stat_df)
stat_df = stat_df.type(torch.LongTensor)
demo_df = torch.tensor(demo_df)
demo_df = demo_df.type(torch.LongTensor)
y_df = torch.tensor(y)
y_df = y_df.type(torch.LongTensor)
return stat_df, demo_df, meds, charts, out, proc, lab, y_df
def getXY(dyn,stat,demo,concat_cols,concat):
X_df=pd.DataFrame()
if concat:
dyna=dyn.copy()
dyna.columns=dyna.columns.droplevel(0)
dyna=dyna.to_numpy()
dyna=np.nan_to_num(dyna, copy=False)
dyna=dyna.reshape(1,-1)
dyn_df=pd.DataFrame(data=dyna,columns=concat_cols)
else:
dyn_df=pd.DataFrame()
for key in dyn.columns.levels[0]:
dyn_temp=dyn[key]
if ((key=="CHART") or (key=="MEDS")):
agg=dyn_temp.aggregate("mean")
agg=agg.reset_index()
else:
agg=dyn_temp.aggregate("max")
agg=agg.reset_index()
if dyn_df.empty:
dyn_df=agg
else:
dyn_df=pd.concat([dyn_df,agg],axis=0)
dyn_df=dyn_df.T
dyn_df.columns = dyn_df.iloc[0]
dyn_df=dyn_df.iloc[1:,:]
X_df=pd.concat([dyn_df,stat],axis=1)
X_df=pd.concat([X_df,demo],axis=1)
return X_df
def task_cohort(task, mimic_path, config_path):
sys.path.append('./preprocessing/day_intervals_preproc')
sys.path.append('./utils')
sys.path.append('./preprocessing/hosp_module_preproc')
sys.path.append('./model')
import day_intervals_cohort_v22
import day_intervals_cohort
import feature_selection_icu
import data_generation_icu_modify
root_dir = os.path.dirname(os.path.abspath('UserInterface.ipynb'))
config_path='./config/'+config_path
with open(config_path) as f:
config = yaml.safe_load(f)
version_path = mimic_path+'/'
version = mimic_path.split('/')[-1][0]
start = time.time()
#----------------------------------------------config----------------------------------------------------
label, tim, disease_label, predW = check_config(task,config_path)
timeW = config['timeWindow']
include=int(timeW.split()[1])
bucket = config['timebucket']
radimp = config['radimp']
diag_flag = config['diagnosis']
out_flag = config['output']
chart_flag = config['chart']
proc_flag= config['proc']
med_flag = config['meds']
disease_filter = config['disease_filter']
icu_no_icu = config['icu_no_icu']
groupingICD = config['groupingICD']
select_diag= config['select_diag']
select_med= config['select_med']
select_proc= config['select_proc']
#select_lab= config['select_lab']
select_out= config['select_out']
select_chart= config['select_chart']
# -------------------------------------------------------------------------------------------------------------
data_icu=icu_no_icu=="ICU"
data_mort=label=="Mortality"
data_admn=label=='Readmission'
data_los=label=='Length of Stay'
if (disease_filter=="Heart Failure"):
icd_code='I50'
elif (disease_filter=="CKD"):
icd_code='N18'
elif (disease_filter=="COPD"):
icd_code='J44'
elif (disease_filter=="CAD"):
icd_code='I25'
else:
icd_code='No Disease Filter'
#-----------------------------------------------EXTRACT MIMIC-----------------------------------------------------
if version == '2':
cohort_output = day_intervals_cohort_v22.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
elif version == '1':
cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
#----------------------------------------------FEATURES-------------------------------------------------------
print(data_icu)
if data_icu :
feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
#----------------------------------------------GROUPING-------------------------------------------------------
if data_icu:
if diag_flag:
group_diag=groupingICD
feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
#----------------------------------------------SUMMARY-------------------------------------------------------
if data_icu:
feature_selection_icu.generate_summary_icu(diag_flag,proc_flag,med_flag,out_flag,chart_flag)
#----------------------------------------------FEATURE SELECTION---------------------------------------------
feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
#---------------------------------------CLEANING OF FEATURES-----------------------------------------------
thresh=0
if data_icu:
if chart_flag:
outlier_removal=config['outlier_removal']
clean_chart=outlier_removal!='No outlier detection'
impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
thresh=config['outlier']
left_thresh=config['left_outlier']
feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
# ---------------------------------------tim-Series Representation--------------------------------------------
if radimp == 'forward fill and mean' :
impute='Mean'
elif radimp =='forward fill and median':
impute = 'Median'
else :
impute = False
if data_icu:
gen=data_generation_icu_modify.Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
end = time.time()
print("Time elapsed : ", round((end - start)/60,2),"mins")
print("[============TASK COHORT SUCCESSFULLY CREATED============]")
#############################################DATASET####################################################################
class Mimic4DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for Mimic4Dataset."""
def __init__(
self,
**kwargs,
):
super().__init__(**kwargs)
class Mimic4Dataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def __init__(self, **kwargs):
self.mimic_path = kwargs.pop("mimic_path", None)
self.encoding = kwargs.pop("encoding",'raw')
self.config_path = kwargs.pop("config_path",None)
self.test_size = kwargs.pop("test_size",0.2)
self.val_size = kwargs.pop("val_size",0.1)
self.generate_cohort = kwargs.pop("generate_cohort",True)
if self.encoding == 'concat':
self.concat = True
else:
self.concat = False
super().__init__(**kwargs)
BUILDER_CONFIGS = [
Mimic4DatasetConfig(
name="Phenotype",
version=VERSION,
description="Dataset for mimic4 Phenotype task"
),
Mimic4DatasetConfig(
name="Readmission",
version=VERSION,
description="Dataset for mimic4 Readmission task"
),
Mimic4DatasetConfig(
name="Length of Stay",
version=VERSION,
description="Dataset for mimic4 Length of Stay task"
),
Mimic4DatasetConfig(
name="Mortality",
version=VERSION,
description="Dataset for mimic4 Mortality task"
),
]
DEFAULT_CONFIG_NAME = "Mortality"
def create_cohort(self):
if self.config.name==None:
if self.config.name == 'Phenotype' : self.config_path = _CONFIG_URLS['phenotype']
if self.config.name == 'Readmission' : self.config_path = _CONFIG_URLS['readmission']
if self.config.name == 'Length of Stay' : self.config_path = _CONFIG_URLS['los']
if self.config.name == 'Mortality' : self.config_path = _CONFIG_URLS['mortality']
version = self.mimic_path.split('/')[-1]
mimic_folder= self.mimic_path.split('/')[-2]
mimic_complete_path='/'+mimic_folder+'/'+version
current_directory = os.getcwd()
if os.path.exists(os.path.dirname(current_directory)+'/MIMIC-IV-Data-Pipeline-main'):
dir =os.path.dirname(current_directory)
os.chdir(dir)
else:
#move to parent directory of mimic data
dir = self.mimic_path.replace(mimic_complete_path,'')
if dir[-1]!='/':
dir=dir+'/'
elif dir=='':
dir="./"
parent_dir = os.path.dirname(self.mimic_path)
os.chdir(parent_dir)
#####################clone git repo if doesnt exists
repo_url='https://github.com/healthylaife/MIMIC-IV-Data-Pipeline'
if os.path.exists('MIMIC-IV-Data-Pipeline-main'):
path_bench = './MIMIC-IV-Data-Pipeline-main'
else:
path_bench ='./MIMIC-IV-Data-Pipeline-main'
subprocess.run(["git", "clone", repo_url, path_bench])
os.makedirs(path_bench+'/mimic-iv')
shutil.move(version,path_bench+'/mimic-iv')
os.chdir(path_bench)
self.mimic_path = './mimic-iv/'+version
####################Get configurations param
#download config file if not custom
if self.config_path[0:4] == 'http':
c = self.config_path.split('/')[-1]
file_path, head = urlretrieve(self.config_path,c)
else :
file_path = self.config_path
if not os.path.exists('./config'):
os.makedirs('config')
#save config file in config folder
self.conf='./config/'+file_path.split('/')[-1]
if not os.path.exists(self.conf):
shutil.move(file_path,'./config')
with open(self.conf) as f:
config = yaml.safe_load(f)
self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out = config['diagnosis'], config['chart'], config['proc'], config['meds'], config['output']
#####################downloads modules from hub
if not os.path.exists('./model/data_generation_icu_modify.py'):
file_path, head = urlretrieve(_DATA_GEN, "data_generation_icu_modify.py")
shutil.move(file_path, './model')
if not os.path.exists('./preprocessing/day_intervals_preproc/day_intervals_cohort_v22.py'):
file_path, head = urlretrieve(_DAY_INT, "day_intervals_cohort_v22.py")
shutil.move(file_path, './preprocessing/day_intervals_preproc')
data_dir = "./data/dict/"+self.config.name.replace(" ","_")+"/dataDic"
sys.path.append(path_bench)
config = self.config_path.split('/')[-1]
#####################create task cohort
if self.generate_cohort:
task_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)
#####################Split data into train, test and val
with open(data_dir, 'rb') as fp:
dataDic = pickle.load(fp)
data = pd.DataFrame.from_dict(dataDic)
data=data.T
train_data, test_data = train_test_split(data, test_size=self.test_size, random_state=42)
train_data, val_data = train_test_split(train_data, test_size=self.val_size, random_state=42)
dict_dir = "./data/dict/"+self.config.name.replace(" ","_")
train_dic = train_data.to_dict('index')
test_dic = test_data.to_dict('index')
val_dic = val_data.to_dict('index')
train_path = dict_dir+'/train_data.pkl'
test_path = dict_dir+'/test_data.pkl'
val_path = dict_dir+'/val_data.pkl'
with open(train_path, 'wb') as f:
pickle.dump(train_dic, f)
with open(val_path, 'wb') as f:
pickle.dump(val_dic, f)
with open(test_path, 'wb') as f:
pickle.dump(test_dic, f)
return dict_dir
###########################################################RAW##################################################################
def _info_raw(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"gender": datasets.Value("string"),
"ethnicity": datasets.Value("string"),
"insurance": datasets.Value("string"),
"age": datasets.Value("int32"),
"COND": datasets.Sequence(datasets.Value("string")),
"MEDS": {
"signal":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
,
"rate":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
,
"amount":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
},
"PROC": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"CHART":
{
"signal" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"val" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
},
"OUT": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_raw(self, filepath):
with open(filepath, 'rb') as fp:
dataDic = pickle.load(fp)
for hid, data in dataDic.items():
proc_features = data['Proc']
chart_features = data['Chart']
meds_features = data['Med']
out_features = data['Out']
cond_features = data['Cond']['fids']
eth= data['ethnicity']
age = data['age']
gender = data['gender']
label = data['label']
insurance=data['insurance']
items = list(proc_features.keys())
values =[proc_features[i] for i in items ]
procs = {"id" : items,
"value": values}
items_outs = list(out_features.keys())
values_outs =[out_features[i] for i in items_outs ]
outs = {"id" : items_outs,
"value": values_outs}
#chart signal
if ('signal' in chart_features):
items_chart_sig = list(chart_features['signal'].keys())
values_chart_sig =[chart_features['signal'][i] for i in items_chart_sig ]
chart_sig = {"id" : items_chart_sig,
"value": values_chart_sig}
else:
chart_sig = {"id" : [],
"value": []}
#chart val
if ('val' in chart_features):
items_chart_val = list(chart_features['val'].keys())
values_chart_val =[chart_features['val'][i] for i in items_chart_val ]
chart_val = {"id" : items_chart_val,
"value": values_chart_val}
else:
chart_val = {"id" : [],
"value": []}
charts = {"signal" : chart_sig,
"val" : chart_val}
#meds signal
if ('signal' in meds_features):
items_meds_sig = list(meds_features['signal'].keys())
values_meds_sig =[meds_features['signal'][i] for i in items_meds_sig ]
meds_sig = {"id" : items_meds_sig,
"value": values_meds_sig}
else:
meds_sig = {"id" : [],
"value": []}
#meds rate
if ('rate' in meds_features):
items_meds_rate = list(meds_features['rate'].keys())
values_meds_rate =[meds_features['rate'][i] for i in items_meds_rate ]
meds_rate = {"id" : items_meds_rate,
"value": values_meds_rate}
else:
meds_rate = {"id" : [],
"value": []}
#meds amount
if ('amount' in meds_features):
items_meds_amount = list(meds_features['amount'].keys())
values_meds_amount =[meds_features['amount'][i] for i in items_meds_amount ]
meds_amount = {"id" : items_meds_amount,
"value": values_meds_amount}
else:
meds_amount = {"id" : [],
"value": []}
meds = {"signal" : meds_sig,
"rate" : meds_rate,
"amount" : meds_amount}
yield int(hid), {
"label" : label,
"gender" : gender,
"ethnicity" : eth,
"insurance" : insurance,
"age" : age,
"COND" : cond_features,
"PROC" : procs,
"CHART" : charts,
"OUT" : outs,
"MEDS" : meds
}
###########################################################ENCODED##################################################################
def _info_encoded(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"features" : datasets.Sequence(datasets.Value("float32")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_encoded(self, filepath):
path= './data/dict/'+self.config.name.replace(" ","_")+'/ethVocab'
with open(path, 'rb') as fp:
ethVocab = pickle.load(fp)
path= './data/dict/'+self.config.name.replace(" ","_")+'/insVocab'
with open(path, 'rb') as fp:
insVocab = pickle.load(fp)
genVocab = ['<PAD>', 'M', 'F']
gen_encoder = LabelEncoder()
eth_encoder = LabelEncoder()
ins_encoder = LabelEncoder()
gen_encoder.fit(genVocab)
eth_encoder.fit(ethVocab)
ins_encoder.fit(insVocab)
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
df = pd.DataFrame.from_dict(dico, orient='index')
task=self.config.name.replace(" ","_")
for i, data in df.iterrows():
concat_cols=[]
dyn_df,cond_df,demo=concat_data(data,task,self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds)
dyn=dyn_df.copy()
dyn.columns=dyn.columns.droplevel(0)
cols=dyn.columns
time=dyn.shape[0]
for t in range(time):
cols_t = [str(x) + "_"+str(t) for x in cols]
concat_cols.extend(cols_t)
demo['gender']=gen_encoder.transform(demo['gender'])
demo['ethnicity']=eth_encoder.transform(demo['ethnicity'])
demo['insurance']=ins_encoder.transform(demo['insurance'])
label = data['label']
demo=demo.drop(['label'],axis=1)
X= getXY(dyn_df,cond_df,demo,concat_cols,self.concat)
X=X.values.tolist()[0]
yield int(i), {
"label": label,
"features": X,
}
######################################################DEEP###############################################################
def _info_deep(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"DEMO": datasets.Array2D(shape=(None, 4), dtype="int64"),
"COND" : datasets.Array2D(shape=(None, 1025), dtype='int64') ,
"MEDS" : datasets.Array2D(shape=(None, self.size_meds), dtype='float32') ,
"PROC" : datasets.Array2D(shape=(None, self.size_proc), dtype='float32') ,
"CHART" : datasets.Array2D(shape=(None, self.size_chart), dtype='float32') ,
"OUT" : datasets.Array2D(shape=(None, self.size_out), dtype='float32') ,
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_deep(self, filepath):
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
task=self.config.name.replace(" ","_")
i=0
for key, data in dico.items():
stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, task, self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds)
if i==998:
print('998 : \n', stat.shape, demo.shape, meds.shape, chart.shape, out.shape, proc.shape, lab.shape, y.shape)
if i==999:
print('\n 999 : \n', stat.shape, demo.shape, meds.shape, chart.shape, out.shape, proc.shape, lab.shape, y.shape)
i+=1
yield int(key), {
'label': y,
'DEMO': demo,
'COND': stat,
'MEDS': meds,
'PROC': proc,
'CHART': chart,
'OUT': out,
}
#############################################################################################################################
def _info(self):
self.path = self.create_cohort()
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,False)
if self.encoding == 'concat' :
return self._info_encoded()
elif self.encoding == 'aggreg' :
return self._info_encoded()
elif self.encoding == 'tensor' :
return self._info_deep()
else:
return self._info_raw()
def _split_generators(self, dl_manager):
csv_dir = "./data/dict/"+self.config.name.replace(" ","_")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": csv_dir+'/train_data.pkl'}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": csv_dir+'/val_data.pkl'}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": csv_dir+'/test_data.pkl'}),
]
def _generate_examples(self, filepath):
if self.encoding == 'concat' :
yield from self._generate_examples_encoded(filepath)
elif self.encoding == 'aggreg' :
yield from self._generate_examples_encoded(filepath)
elif self.encoding == 'tensor' :
yield from self._generate_examples_deep(filepath)
else :
yield from self._generate_examples_raw(filepath)
|